Author: Khanday, Akib Mohi Ud Din; Rabani, Syed Tanzeel; Khan, Qamar Rayees; Rouf, Nusrat; Mohi Ud Din, Masarat
Title: Machine learning based approaches for detecting COVID-19 using clinical text data Cord-id: domlm2kh Document date: 2020_6_30
ID: domlm2kh
Snippet: Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc
Document: Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.
Search related documents:
Co phrase search for related documents- accuracy f1 score and acute respiratory syndrome: 1, 2, 3, 4, 5, 6
- accuracy f1 score and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- accuracy f1 score and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy f1 score and machine learning approach: 1, 2, 3, 4
- accuracy show and acute respiratory distress syndrome: 1
- accuracy show and acute respiratory syndrome: 1, 2, 3, 4, 5
- accuracy show and logistic regression: 1, 2, 3, 4, 5
- accuracy show and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy show and machine learning approach: 1, 2, 3, 4, 5
- accurate diagnosis and acute ards respiratory distress syndrome: 1, 2, 3, 4, 5
- accurate diagnosis and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8
- accurate diagnosis and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accurate diagnosis and adaboost classifier: 1, 2
- accurate diagnosis and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- accurate diagnosis and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accurate diagnosis and machine learning approach: 1, 2, 3
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- acute ards respiratory distress syndrome and machine learning approach: 1
Co phrase search for related documents, hyperlinks ordered by date