Selected article for: "epidemiological model and long term"

Author: Chakrabarty, Rajan K.; Beeler, Payton; Liu, Pai; Goswami, Spondita; Harvey, Richard D.; Pervez, Shamsh; van Donkelaar, Aaron; Martin, Randall V.
Title: Ambient PM2.5 exposure and rapid spread of COVID-19 in the United States
  • Cord-id: y5io9qzl
  • Document date: 2020_11_9
  • ID: y5io9qzl
    Snippet: It has been posited that populations being exposed to long-term air pollution are more susceptible to COVID-19. Evidence is emerging that long-term exposure to ambient PM2.5 (particulate matter with aerodynamic diameter 2.5 μm or less) associates with higher COVID-19 mortality rates, but whether it also associates with the speed at which the disease is capable of spreading in a population is unknown. Here, we establish the association between long-term exposure to ambient PM2.5 in the United St
    Document: It has been posited that populations being exposed to long-term air pollution are more susceptible to COVID-19. Evidence is emerging that long-term exposure to ambient PM2.5 (particulate matter with aerodynamic diameter 2.5 μm or less) associates with higher COVID-19 mortality rates, but whether it also associates with the speed at which the disease is capable of spreading in a population is unknown. Here, we establish the association between long-term exposure to ambient PM2.5 in the United States (US) and COVID-19 basic reproduction ratio R 0– a dimensionless epidemic measure of the rapidity of disease spread through a population. We inferred state-level R 0 values using a state-of-the-art susceptible, exposed, infected, and recovered (SEIR) model initialized with COVID-19 epidemiological data corresponding to the period March 2–April 30. This period was characterized by a rapid surge in COVID-19 cases across the US states, implementation of strict social distancing measures, and a significant drop in outdoor air pollution. We find that an increase of 1 μg/m3 in PM2.5 levels below current national ambient air quality standards associates with an increase of 0.25 in R 0 (95% CI: 0.048–0.447). A 10% increase in secondary inorganic composition, sulfate-nitrate-ammonium, in PM2.5 associates with ≈10% increase in R 0 by 0.22 (95% CI: 0.083–0.352), and presence of black carbon (soot) in the ambient moderates this relationship. We considered several potential confounding factors in our analysis including gaseous air pollutants, and socio-economical and meteorological conditions. Our results underscore two policy implications – first, regulatory standards need to be better guided by exploring the concentration-response relationships near the lower end of the PM2.5 air quality distribution; and second, pollution regulations need to be continually enforced for combustion emissions that largely determine secondary inorganic aerosol formation.

    Search related documents:
    Co phrase search for related documents
    • acute lung injury and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute lung injury and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute lung injury and lung protection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
    • acute respiratory distress syndrome and long term disease progression: 1
    • acute respiratory distress syndrome and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory distress syndrome and lung protection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
    • long term air pollution exposure and lung function: 1, 2
    • long term disease progression and lung injury: 1
    • long term disease progression and lung protection: 1
    • long term exposure and lung function: 1, 2, 3, 4, 5, 6
    • long term exposure and lung injury: 1, 2, 3
    • long term pm exposure and lung injury: 1
    • low socioeconomic status and lung function: 1, 2