Selected article for: "sialic acid and trans Golgi medial"

Author: Arming, Sigrid; Wipfler, Dirk; Mayr, Juliane; Merling, Anette; Vilas, Ulrike; Schauer, Roland; Schwartz-Albiez, Reinhard; Vlasak, Reinhard
Title: The human Cas1 protein: A sialic acid-specific O-acetyltransferase?
  • Cord-id: e12bs3e4
  • Document date: 2010_10_14
  • ID: e12bs3e4
    Snippet: Sialic acids are important sugars at the reducing end of glycoproteins and glycolipids. They are among many other functions involved in cell–cell interactions, host–pathogen recognition and the regulation of serum half-life of glycoproteins. An important modification of sialic acids is O-acetylation, which can alter or mask the biological properties of the parent sialic acid molecule. The nature of mammalian sialate-O-acetyltransferases (EC 2.3.1.45) involved in their biosynthesis is still u
    Document: Sialic acids are important sugars at the reducing end of glycoproteins and glycolipids. They are among many other functions involved in cell–cell interactions, host–pathogen recognition and the regulation of serum half-life of glycoproteins. An important modification of sialic acids is O-acetylation, which can alter or mask the biological properties of the parent sialic acid molecule. The nature of mammalian sialate-O-acetyltransferases (EC 2.3.1.45) involved in their biosynthesis is still unknown. We have identified the human CasD1 (capsule structure1 domain containing 1) gene as a candidate to encode the elusive enzyme. The human CasD1 gene encodes a protein with a serine–glycine–asparagine–histidine hydrolase domain and a hydrophobic transmembrane domain. Expression of the Cas1 protein tagged with enhanced green fluorescent protein in mammalian and insect cells directed the protein to the medial and trans-cisternae of the Golgi. Overexpression of the Cas1 protein in combination with α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (GD3 synthase) resulted in an up to 40% increased biosynthesis of 7-O-acetylated ganglioside GD3. By quantitative real-time polymerase chain reaction, we found up to 5-fold increase in CasD1 mRNA in tumor cells overexpressing O-Ac-GD3. CasD1-specific small interfering RNA reduced O-acetylation in tumor cells. These results suggest that the human Cas1 protein is directly involved in O-acetylation of α2-8-linked sialic acids.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1