Author: Han, Kap Su; Kim, Su Jin; Lee, Eui Jung; Shin, Joong Ho; Lee, Ji Sung; Lee, Sung Woo
Title: Development and validation of new poisoning mortality score system for patients with acute poisoning at the emergency department Cord-id: e2ifw1dw Document date: 2021_1_18
ID: e2ifw1dw
Snippet: BACKGROUND: A prediction model of mortality for patients with acute poisoning has to consider both poisoning-related characteristics and patients’ physiological conditions; moreover, it must be applicable to patients of all ages. This study aimed to develop a scoring system for predicting in-hospital mortality of patients with acute poisoning at the emergency department (ED). METHODS: This was a retrospective analysis of the Injury Surveillance Cohort generated by the Korea Center for Disease
Document: BACKGROUND: A prediction model of mortality for patients with acute poisoning has to consider both poisoning-related characteristics and patients’ physiological conditions; moreover, it must be applicable to patients of all ages. This study aimed to develop a scoring system for predicting in-hospital mortality of patients with acute poisoning at the emergency department (ED). METHODS: This was a retrospective analysis of the Injury Surveillance Cohort generated by the Korea Center for Disease Control and Prevention (KCDC) during 2011–2018. We developed the new-Poisoning Mortality Scoring system (new-PMS) to generate a prediction model using the derivation group (2011–2017 KCDC cohort). Points were computed for categories of each variable. The sum of these points was the new-PMS. The validation group (2018 KCDC cohort) was subjected to external temporal validation. The performance of new-PMS in predicting mortality was evaluated using area under the receiver operating characteristic curve (AUROC) for both the groups. RESULTS: Of 57,326 poisoning cases, 42,568 were selected. Of these, 34,352 (80.7%) and 8216 (19.3%) were enrolled in the derivation and validation groups, respectively. The new-PMS was the sum of the points for each category of 10 predictors. The possible range of the new-PMS was 0–137 points. Hosmer–Lemeshow goodness-of-fit test showed adequate calibration for the new-PMS with p values of 0.093 and 0.768 in the derivation and validation groups, respectively. AUROCs of the new-PMS were 0.941 (95% CI 0.934–0.949, p < 0.001) and 0.946 (95% CI 0.929–0.964, p < 0.001) in the derivation and validation groups, respectively. The sensitivity, specificity, and accuracy of the new-PMS (cutoff value: 49 points) were 86.4%, 87.2%, and 87.2% and 85.9%, 89.5%, and 89.4% in the derivation and validation groups, respectively. CONCLUSIONS: We developed a new-PMS system based on demographic, poisoning-related variables, and vital signs observed among patients at the ED. The new-PMS showed good performance for predicting in-hospital mortality in both the derivation and validation groups. The probability of death increased according to the increase in the new-PMS. The new-PMS accurately predicted the probability of death for patients with acute poisoning. This could contribute to clinical decision making for patients with acute poisoning at the ED.
Search related documents:
Co phrase search for related documents- additional file and admission time: 1, 2, 3, 4, 5, 6, 7
- additional file and logistic regression: 1
- additional file and low mortality: 1
- admission day and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- admission day and logistic regression method: 1
- admission day and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- admission day and low mortality: 1, 2, 3, 4, 5, 6, 7, 8
- admission day and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- admission time and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- admission time and logistic regression method: 1, 2
- logistic regression and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning system: 1, 2, 3
- logistic regression model and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- logistic regression model and machine learn: 1
- logistic regression model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55
- logistic regression model and machine learning system: 1
- low mortality and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Co phrase search for related documents, hyperlinks ordered by date