Author: Keles, Ayturk; Keles, Mustafa Berk; Keles, Ali
Title: COV19-CNNet and COV19-ResNet: Diagnostic Inference Engines for Early Detection of COVID-19 Cord-id: zghlxmef Document date: 2021_1_6
ID: zghlxmef
Snippet: Chest CT is used in the COVID-19 diagnosis process as a significant complement to the reverse transcription polymerase chain reaction (RT–PCR) technique. However, it has several drawbacks, including long disinfection and ventilation times, excessive radiation effects, and high costs. While X-ray radiography is more useful for detecting COVID-19, it is insensitive to the early stages of the disease. We have developed inference engines that will turn X-ray machines into powerful diagnostic tools
Document: Chest CT is used in the COVID-19 diagnosis process as a significant complement to the reverse transcription polymerase chain reaction (RT–PCR) technique. However, it has several drawbacks, including long disinfection and ventilation times, excessive radiation effects, and high costs. While X-ray radiography is more useful for detecting COVID-19, it is insensitive to the early stages of the disease. We have developed inference engines that will turn X-ray machines into powerful diagnostic tools by using deep learning technology to detect COVID-19. We named these engines COV19-CNNet and COV19-ResNet. The former is based on convolutional neural network architecture; the latter is on residual neural network (ResNet) architecture. This research is a retrospective study. The database consists of 210 COVID-19, 350 viral pneumonia, and 350 normal (healthy) chest X-ray (CXR) images that were created using two different data sources. This study was focused on the problem of multi-class classification (COVID-19, viral pneumonia, and normal), which is a rather difficult task for the diagnosis of COVID-19. The classification accuracy levels for COV19-ResNet and COV19-CNNet were 97.61% and 94.28%, respectively. The inference engines were developed from scratch using new and special deep neural networks without pre-trained models, unlike other studies in the field. These powerful diagnostic engines allow for the early detection of COVID-19 as well as distinguish it from viral pneumonia with similar radiological appearances. Thus, they can help in fast recovery at the early stages, prevent the COVID-19 outbreak from spreading, and contribute to reducing pressure on health-care systems worldwide.
Search related documents:
Co phrase search for related documents- accessible fast cheap and accuracy level achieve: 1
- accuracy level achieve and machine learning: 1
- accuracy level and activation function: 1
- accuracy level and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- accuracy performance and activation function: 1, 2, 3
- accuracy performance and lung affect: 1
- accuracy performance and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- accuracy performance and machine surface: 1
- accuracy rate and activation function: 1
Co phrase search for related documents, hyperlinks ordered by date