Author: Zeng, Peng; Sun, Zongyao; Chen, Yuqi; Qiao, Zhi; Cai, Liangwa
Title: COVID-19: A Comparative Study of Population Aggregation Patterns in the Central Urban Area of Tianjin, China Cord-id: gqw14lv4 Document date: 2021_2_22
ID: gqw14lv4
Snippet: When a public health emergency occurs, a potential sanitation threat will directly change local residents’ behavior patterns, especially in high-density urban areas. Their behavior pattern is typically transformed from demand-oriented to security-oriented. This is directly manifested as a differentiation in the population distribution. This study based on a typical area of high-density urban area in central Tianjin, China. We used Baidu heat map (BHM) data to calculate full-day and daytime/nig
Document: When a public health emergency occurs, a potential sanitation threat will directly change local residents’ behavior patterns, especially in high-density urban areas. Their behavior pattern is typically transformed from demand-oriented to security-oriented. This is directly manifested as a differentiation in the population distribution. This study based on a typical area of high-density urban area in central Tianjin, China. We used Baidu heat map (BHM) data to calculate full-day and daytime/nighttime state population aggregation and employed a geographically weighted regression (GWR) model and Moran’s I to analyze pre-epidemic/epidemic population aggregation patterns and pre-epidemic/epidemic population flow features. We found that during the COVID-19 epidemic, the population distribution of the study area tended to be homogenous clearly and the density decreased obviously. Compared with the pre-epidemic period: residents’ demand for indoor activities increased (average correlation coefficient of the floor area ratio increased by 40.060%); traffic demand decreased (average correlation coefficient of the distance to a main road decreased by 272%); the intensity of the day-and-night population flow declined significantly (its extreme difference decreased by 53.608%); and the large-living-circle pattern of population distribution transformed to multiple small-living circles. This study identified different space utilization mechanisms during the pre-epidemic and epidemic periods. It conducted the minimum living security state of an epidemic-affected city to maintain the operation of a healthy city in the future.
Search related documents:
Co phrase search for related documents- access point and adjacent area: 1
- active time and living area: 1
Co phrase search for related documents, hyperlinks ordered by date