Author: Zhou, Liqian; Wang, Juanjuan; Liu, Guangyi; Lu, Qingqing; Dong, Ruyi; Tian, Geng; Yang, Jialiang; Peng, Lihong
Title: Probing antiviral drugs against SARS-CoV-2 through virus-drug association prediction based on the KATZ method Cord-id: hmq6bke1 Document date: 2020_7_31
ID: hmq6bke1
Snippet: It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations (VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete genomic sequence similarity of viruses and chemical structure similarity of drugs are then computed. A KATZ-based VDA prediction method (VDA-KATZ) is developed to infer possible drugs associated with SARS-CoV-2. VDA-KATZ obtained the best AUCs of 0.8803 when the walking length i
Document: It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations (VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete genomic sequence similarity of viruses and chemical structure similarity of drugs are then computed. A KATZ-based VDA prediction method (VDA-KATZ) is developed to infer possible drugs associated with SARS-CoV-2. VDA-KATZ obtained the best AUCs of 0.8803 when the walking length is 2. The predicted top 3 antiviral drugs against SARS-CoV-2 are remdesivir, oseltamivir, and zanamivir. Molecular docking is conducted between the predicted top 10 drugs and the virus spike protein/human ACE2. The results showed that the above 3 chemical agents have higher molecular binding energies with ACE2. For the first time, we found that zidovudine may be effective clues of treatment of COVID-19. We hope that our predicted drugs could help to prevent the spreading of COVID.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date