Selected article for: "binding site and catalytic triad"

Author: Mirza, Muhammad Usman; Ahmad, Sarfraz; Abdullah, Iskandar; Froeyen, Matheus
Title: Identification of novel human USP2 inhibitor and its putative role in treatment of COVID-19 by inhibiting SARS-CoV-2 papain-like (PLpro) protease
  • Cord-id: guh1y76a
  • Document date: 2020_9_13
  • ID: guh1y76a
    Snippet: • Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb–palm–fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situa
    Document: • Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb–palm–fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC(50) value against Jurkat (9.67 µM) and MOTL-4 cells (11.8 µM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.

    Search related documents:
    Co phrase search for related documents
    • absolute energy and acute respiratory syndrome: 1, 2
    • accordingly prepare and acute respiratory syndrome: 1
    • accordingly rank and acute respiratory syndrome: 1
    • active compound and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    • active compound and low micromolar: 1, 2, 3, 4
    • active scaffold and acute respiratory syndrome: 1
    • active site and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active site and low micromolar: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
    • active site and low micromolar range: 1, 2, 3, 4, 5, 6
    • acute respiratory syndrome and admet property: 1, 2
    • acute respiratory syndrome and low micromolar: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and low micromolar range: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10