Selected article for: "acute ards respiratory distress syndrome and lower mortality"

Author: Yehya, Nadir; Varisco, Brian M.; Thomas, Neal J.; Wong, Hector R.; Christie, Jason D.; Feng, Rui
Title: Peripheral blood transcriptomic sub-phenotypes of pediatric acute respiratory distress syndrome
  • Cord-id: eda9apt3
  • Document date: 2020_12_7
  • ID: eda9apt3
    Snippet: BACKGROUND: Acute respiratory distress syndrome (ARDS) is heterogeneous and may be amenable to sub-phenotyping to improve enrichment for trials. We aimed to identify subtypes of pediatric ARDS based on whole blood transcriptomics. METHODS: This was a prospective observational study of children with ARDS at the Children’s Hospital of Philadelphia (CHOP) between January 2018 and June 2019. We collected blood within 24 h of ARDS onset, generated expression profiles, and performed k-means clusteri
    Document: BACKGROUND: Acute respiratory distress syndrome (ARDS) is heterogeneous and may be amenable to sub-phenotyping to improve enrichment for trials. We aimed to identify subtypes of pediatric ARDS based on whole blood transcriptomics. METHODS: This was a prospective observational study of children with ARDS at the Children’s Hospital of Philadelphia (CHOP) between January 2018 and June 2019. We collected blood within 24 h of ARDS onset, generated expression profiles, and performed k-means clustering to identify sub-phenotypes. We tested the association between sub-phenotypes and PICU mortality and ventilator-free days at 28 days using multivariable logistic and competing risk regression, respectively. RESULTS: We enrolled 106 subjects, of whom 96 had usable samples. We identified three sub-phenotypes, dubbed CHOP ARDS Transcriptomic Subtypes (CATS) 1, 2, and 3. CATS-1 subjects (n = 31) demonstrated persistent hypoxemia, had ten subjects (32%) with immunocompromising conditions, and 32% mortality. CATS-2 subjects (n = 29) had more immunocompromising diagnoses (48%), rapidly resolving hypoxemia, and 24% mortality. CATS-3 subjects (n = 36) had the fewest comorbidities and also had rapidly resolving hypoxemia and 8% mortality. The CATS-3 subtype was associated with lower mortality (OR 0.18, 95% CI 0.04–0.86) and higher probability of extubation (subdistribution HR 2.39, 95% CI 1.32–4.32), relative to CATS-1 after adjustment for confounders. CONCLUSIONS: We identified three sub-phenotypes of pediatric ARDS using whole blood transcriptomics. The sub-phenotypes had divergent clinical characteristics and prognoses. Further studies should validate these findings and investigate mechanisms underlying differences between sub-phenotypes.

    Search related documents:
    Co phrase search for related documents
    • absolute alc lymphocyte count and lung disease: 1, 2, 3
    • absolute alc lymphocyte count and lung injury: 1
    • absolute alc lymphocyte count and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
    • absolute anc neutrophil count and acute ards respiratory distress syndrome: 1
    • absolute anc neutrophil count and additional file: 1
    • absolute anc neutrophil count and low mortality: 1
    • absolute anc neutrophil count and lung disease: 1, 2
    • absolute anc neutrophil count and lung injury: 1
    • absolute anc neutrophil count and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • abundance transcript and low abundance transcript: 1
    • active immunosuppressive therapy and adaptive immune: 1