Author: Chen, H.; Liu, W.; Liu, D.; Zhao, L.; Yu, J.
Title: SARS-CoV-2 activates lung epithelia cell proinflammatory signaling and leads to immune dysregulation in COVID-19 patients by single-cell sequencing Cord-id: 08p8ns2d Document date: 2020_5_13
ID: 08p8ns2d
Snippet: Objective: The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in the lung of COVID-19 patients. Design: We analyzed single-cell RNA sequencing (scRNA-seq) data of lung samples from 17 subjects (6 severe COVID-19 patients, 3 mild patients who recovered and 8 healthy controls). The expression of SARS-CoV-2 receptors (ACE2 a
Document: Objective: The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in the lung of COVID-19 patients. Design: We analyzed single-cell RNA sequencing (scRNA-seq) data of lung samples from 17 subjects (6 severe COVID-19 patients, 3 mild patients who recovered and 8 healthy controls). The expression of SARS-CoV-2 receptors (ACE2 and TMPRSS2) was examined among different cell types in the lung. The immune cells infiltration patterns, their gene expression profiles, and the interplay of immune cells and SARS-CoV-2 target cells were further investigated. Results: Compared to healthy controls, the overall ACE2 (receptor of SARS-CoV-2) expression was significantly higher in lung epithelial cells of COVID-19 patients, in particular in ciliated cell, club cell and basal cell. Comparative transcriptome analysis of these lung epithelial cells of COVID-19 patients and healthy controls identified that SARS-CoV-2 infection activated pro-inflammatory signaling including interferon pathway and cytokine signaling. Moreover, we identified dysregulation of immune response in patients with COVID-19. In severe COVID-19 patients, significantly higher neutrophil, but lower T and NK cells in lung were observed along with markedly increased cytokines (CCL2, CCL3, CCL4, CCL7, CCL3L1 and CCL4L2) compared with healthy controls as well as mild patients who recovered. The cytotoxic phenotypes were shown in lung T and NK cells of severe patients as evidenced by enhanced IFN{gamma}, Granulysin, Granzyme B and Perforin expression. Moreover, SARS-CoV-2 infection altered the community interplay of lung epithelial cells and immune cells: the interaction between epithelial cells with macrophage, T and NK cell was stronger, but their interaction with neutrophils was lost in COVID-19 patients compared to healthy controls. Conclusions: SARS-CoV-2 infection activates pro-inflammatory signaling in lung epithelial cells expressing ACE2 and causes dysregulation of immune response to release more pro-inflammatory cytokines. Moreover, SARS-CoV-2 infection breaks the interplay of lung epithelial cells and immune cells.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and lung epithelia: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lung epithelial cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute ards respiratory distress syndrome and lung epithelial cell type: 1
- acute ards respiratory distress syndrome and lymphocyte ratio: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lymphocyte ratio and macrophage number: 1
Co phrase search for related documents, hyperlinks ordered by date