Author: Wang, Liya; Mykityshyn, Amy; Johnson, Craig; Marple, Benjamin D.
Title: Deep Learning for Flight Demand and Delays Forecasting Cord-id: i3tdmqhj Document date: 2020_11_6
ID: i3tdmqhj
Snippet: The last few years have seen an increased interest in deep learning (DL) due to its success in applications such as computer vision, natural language processing (NLP), and self-driving cars. Inspired by this success, this paper applied DL to predict flight demand and delays, which have been a concern for airlines and the other stakeholders in the National Airspace System (NAS). Demand and delay prediction can be formulated as a supervised learning problem, where, given an understanding of past h
Document: The last few years have seen an increased interest in deep learning (DL) due to its success in applications such as computer vision, natural language processing (NLP), and self-driving cars. Inspired by this success, this paper applied DL to predict flight demand and delays, which have been a concern for airlines and the other stakeholders in the National Airspace System (NAS). Demand and delay prediction can be formulated as a supervised learning problem, where, given an understanding of past historical demand and delays, a deep learning network can examine sequences of historic data to predict current and future sequences. With that in mind, we applied a well-known DL method, sequence to sequence (seq2seq), to solve the problem. Our results show that the seq2seq method can reduce demand prediction mean squared error (MSE) by 50%, compared to two classical baseline algorithms.
Search related documents:
Co phrase search for related documents- absolute error and lr linear regression: 1, 2, 3
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- adapt learn ability and machine learning: 1
- adapt learn and machine learning: 1
- additional research and machine learning: 1, 2, 3, 4, 5
- additional research recommend and machine learning: 1
- long lstm short term memory and lr linear regression: 1, 2
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long lstm short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long sequence and lstm short term memory: 1, 2, 3, 4, 5, 6, 7
- long sequence and machine learning: 1, 2, 3, 4, 5
- long sequence problem and lstm short term memory: 1
- lr linear regression and lstm short term memory: 1, 2
- lr linear regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Co phrase search for related documents, hyperlinks ordered by date