Author: Khalsa, Raveena K.; Khashkhusha, Arwa; Zaidi, Sara; Harky, Amer; Bashir, Mohamad
Title: Artificial intelligence and cardiac surgery during COVIDâ€19 era Cord-id: 3awsfvpg Document date: 2021_2_10
ID: 3awsfvpg
Snippet: The coronavirus disease 2019 (COVIDâ€19) pandemic has increased the burden on hospital staff worldâ€wide. Through the redistribution of scarce resources to these highâ€priority cases, the cardiac sector has fallen behind. In efforts to reduce transmission, reduction in direct patient–physician contact has led to a backlog of cardiac cases. However, this accumulation of postponed or cancelled nonurgent cardiac care seems to be resolvable with the assistance of technology. From telemedicine t
Document: The coronavirus disease 2019 (COVIDâ€19) pandemic has increased the burden on hospital staff worldâ€wide. Through the redistribution of scarce resources to these highâ€priority cases, the cardiac sector has fallen behind. In efforts to reduce transmission, reduction in direct patient–physician contact has led to a backlog of cardiac cases. However, this accumulation of postponed or cancelled nonurgent cardiac care seems to be resolvable with the assistance of technology. From telemedicine to artificial intelligence (AI), technology has transformed healthcare systems nationwide. Telemedicine enables patient monitoring from a distance, while AI unveils a whole new realm of possibilities in clinical practice, examples include: traditional systems replacement with more efficient and accurate processing machines; automation of clerical process; and triage assistance through risk predictions. These possibilities are driven by deep and machine learning. The two subsets of AI are explored and limitations regarding “big data†are discussed. The aims of this review are to explore AI: the advancements in methodology; current integration in cardiac surgery or other clinical scenarios; and potential future roles, which are innately nearing as the COVIDâ€19 era urges alternative approaches for care.
Search related documents:
Co phrase search for related documents- action potential and machine learning model: 1
- action potential and machine model: 1
Co phrase search for related documents, hyperlinks ordered by date