Author: Shahzadi, I.; Shahzadi, A.; Haider, J.; Naz, S.; Aamir, R. M.; Haider, A.; Sharif, H. R.; Khan, I. M.; Ikram, M.
                    Title: Impact of Meteorological factors and population size on the transmission of Micro-size respiratory droplets based Coronavirus: A brief study of highly infected cities in Pakistan  Cord-id: 53v1olqq  Document date: 2020_7_17
                    ID: 53v1olqq
                    
                    Snippet: Ongoing Coronavirus epidemic (COVID-19) identified first in Wuhan, China posed huge impact on public health and economy around the globe. Both cough and sneeze based droplets or aerosols encapsulated COVID-19 particles are responsible for air borne transmission of this virus and caused unexpected escalation and high mortality worldwide. Current study intends to investigate correlation of COVID-19 epidemic with meteorological parameters particularly, temperature, rainfall, humidity, and wind spee
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Ongoing Coronavirus epidemic (COVID-19) identified first in Wuhan, China posed huge impact on public health and economy around the globe. Both cough and sneeze based droplets or aerosols encapsulated COVID-19 particles are responsible for air borne transmission of this virus and caused unexpected escalation and high mortality worldwide. Current study intends to investigate correlation of COVID-19 epidemic with meteorological parameters particularly, temperature, rainfall, humidity, and wind speed along with population size. Data set of COVID-19 for highly infected cities of Pakistan was collected from the official website of National Institute of health (NIH). Spearman rank (rs) correlation coefficient test employed for data analysis revealed significant correlation between temperature minimum (TM), temperature average (TA), wind speed (WS) and population size (PS) with COVID-19 pandemic. Furthermore, receiver operating characteristics (ROC) curve was used to analyze the sensitivity of TA, WS, and PS on transmission rate of COVID-19 in selected cities of Pakistan. The results obtained for sensitivity and specificity analysis for all selected parameters signifies sensitivity and direct correlation of COVID-19 transmission with temperature variation, WS and PS. Positive correlation and strong association of PS parameter with COVID-19 pandemic suggested need of more strict actions and control measures for highly populated cities. These findings will be helpful for health regulatory authorities and policymakers to take specific measures to combat COVID-19 epidemic in Pakistan.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date