Author: Liu, Hongjie; Li, Jinhui; Lin, Yanfeng; Bo, Xiaochen; Song, Hongbin; Li, Kuibiao; Li, Peng; Ni, Ming
Title: Assessment of two-pool multiplex long-amplicon nanopore sequencing of SARS-CoV-2 Cord-id: etjhuhut Document date: 2021_1_1
ID: etjhuhut
Snippet: Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in COVID-19 pandemic control and elimination efforts, especially by elucidating its global transmission network and illustrating its viral evolution. The deployment of multiplex PCR assays that target SARS-CoV-2 followed by either massively parallel or nanopore sequencing is a widely-used strategy to obtain genome sequences from primary samples. However, multiplex PCR-based sequencing car
Document: Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in COVID-19 pandemic control and elimination efforts, especially by elucidating its global transmission network and illustrating its viral evolution. The deployment of multiplex PCR assays that target SARS-CoV-2 followed by either massively parallel or nanopore sequencing is a widely-used strategy to obtain genome sequences from primary samples. However, multiplex PCR-based sequencing carries an inherent bias of sequencing depth among different amplicons, which may cause uneven coverage. Here we developed a two-pool, long-amplicon 36-plex PCR primer panel with ~1000-bp amplicon lengths for full-genome sequencing of SARS-CoV-2. We validated the panel by assessing nasopharyngeal swab samples with a <30 quantitative reverse transcription PCR cycle threshold value and found that ≥90% of viral genomes could be covered with high sequencing depths (≥20% mean depth). In comparison, the widely-used ARTIC panel yielded 79%-88% high-depth genome regions. We estimated that ~5 Mbp nanopore sequencing data may ensure a >95% viral genome coverage with a ≥10-fold depth and may generate reliable genomes at consensus sequence levels. Nanopore sequencing yielded false-positive variations with frequencies of supporting reads <0.8, and the sequencing errors mostly occurred on the 5' or 3' ends of reads. Thus, nanopore sequencing could not elucidate intra-host viral diversity.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date