Author: Goodman-Meza, David; Rudas, Akos; Chiang, Jeffrey N.; Adamson, Paul C.; Ebinger, Joseph; Sun, Nancy; Botting, Patrick; Fulcher, Jennifer A.; Saab, Faysal G.; Brook, Rachel; Eskin, Eleazar; An, Ulzee; Kordi, Misagh; Jew, Brandon; Balliu, Brunilda; Chen, Zeyuan; Hill, Brian L.; Rahmani, Elior; Halperin, Eran; Manuel, Vladimir
Title: A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity Cord-id: 895rb4mx Document date: 2020_9_22
ID: 895rb4mx
Snippet: Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. W
Document: Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87–0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85–0.98), specificity of 0.64 (95% CI 0.58–0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.
Search related documents:
Co phrase search for related documents- absence presence and active disease: 1, 2, 3
- absence presence and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- absence presence and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
- absence presence and logistic regression random forest: 1, 2
- absence presence and los angeles: 1, 2, 3
- absence presence and low resource: 1
- absence presence and lymphocyte count: 1, 2, 3, 4, 5, 6
- absence presence and lymphocyte ratio: 1, 2, 3
- absence presence and lymphocyte ratio neutrophil: 1
- absence presence and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absence presence and machine learning model: 1, 2, 3, 4
- absolute eosinophil and acute respiratory syndrome: 1, 2
- absolute eosinophil and logistic regression: 1, 2, 3
- absolute eosinophil and lymphocyte count: 1, 2, 3, 4, 5
- absolute eosinophil and lymphocyte ratio: 1, 2
- absolute eosinophil and lymphocyte ratio neutrophil: 1
- absolute lymphocyte count and active disease: 1
- absolute lymphocyte count and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
- absolute lymphocyte count and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
Co phrase search for related documents, hyperlinks ordered by date