Selected article for: "antiviral activity and significant inhibition"

Author: Botta, Giorgia; Bizzarri, Bruno Mattia; Garozzo, Adriana; Timpanaro, Rossella; Bisignano, Benedetta; Amatore, Donatella; Palamara, Anna Teresa; Nencioni, Lucia; Saladino, Raffaele
Title: Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses
  • Cord-id: 8oes5g6k
  • Document date: 2015_9_1
  • ID: 8oes5g6k
    Snippet: Hydroxytyrosol and dihydrocaffeoyl catechols with lipophilic properties have been synthesized in high yield using tyrosinase immobilized on multi-walled carbon nanotubes by the Layer-by-Layer technique. All synthesized catechols were evaluated against a large panel of DNA and RNA viruses, including Poliovirus type 1, Echovirus type 9, Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), Coxsackievirus type B3 (Cox B3), Adenovirus type 2 and type 5 and Cytomegalovirus (CMV).
    Document: Hydroxytyrosol and dihydrocaffeoyl catechols with lipophilic properties have been synthesized in high yield using tyrosinase immobilized on multi-walled carbon nanotubes by the Layer-by-Layer technique. All synthesized catechols were evaluated against a large panel of DNA and RNA viruses, including Poliovirus type 1, Echovirus type 9, Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), Coxsackievirus type B3 (Cox B3), Adenovirus type 2 and type 5 and Cytomegalovirus (CMV). A significant antiviral activity was observed in the inhibition of HSV-1, HSV-2, Cox B3 and CMV. The mechanism of action of the most active dihydrocaffeoyl derivative was investigated against a model of HSV-1 infection.

    Search related documents:
    Co phrase search for related documents
    • acid derivative and active compound: 1