Selected article for: "animal model and cartilage degeneration"

Author: Waller, Kimberly A; Chin, Kaitlyn E; Jay, Gregory D; Zhang, Ling X; Teeple, Erin; McAllister, Scott; Badger, Gary J; Schmidt, Tannin A; Fleming, Braden C
Title: Intra-articular Recombinant Human Proteoglycan 4 Mitigates Cartilage Damage After Destabilization of the Medial Meniscus in the Yucatan Minipig.
  • Cord-id: kum82fvr
  • Document date: 2017_1_1
  • ID: kum82fvr
    Snippet: BACKGROUND Lubricin, or proteoglycan 4 (PRG4), is a glycoprotein responsible for joint boundary lubrication. PRG4 has been shown previously to be down-regulated after traumatic joint injury such as a meniscal tear. Preliminary evidence suggests that intra-articular injection of PRG4 after injury will reduce cartilage damage in rat models of surgically induced posttraumatic osteoarthritis. OBJECTIVE To determine the efficacy of intra-articular injection of full-length recombinant human lubricin (
    Document: BACKGROUND Lubricin, or proteoglycan 4 (PRG4), is a glycoprotein responsible for joint boundary lubrication. PRG4 has been shown previously to be down-regulated after traumatic joint injury such as a meniscal tear. Preliminary evidence suggests that intra-articular injection of PRG4 after injury will reduce cartilage damage in rat models of surgically induced posttraumatic osteoarthritis. OBJECTIVE To determine the efficacy of intra-articular injection of full-length recombinant human lubricin (rhPRG4) for reducing cartilage damage after medial meniscal destabilization (DMM) in a preclinical large animal model. STUDY DESIGN Controlled laboratory study. METHODS Unilateral DMM was performed in 29 Yucatan minipigs. One week after DMM, animals received 3 weekly intra-articular injections (3 mL per injection): (1) rhPRG4 (1.3 mg/mL; n = 10); (2) rhPRG4+hyaluronan (1.3 mg/mL rhPRG4 and 3 mg/mL hyaluronan [~950 kDA]; n = 10); and (3) phosphate-buffered saline (PBS; n = 9). Hindlimbs were harvested 26 weeks after surgery. Cartilage integrity was evaluated by use of macroscopic (India ink) and microscopic (safranin O-fast green and hematoxylin and eosin) scoring systems. Secondary outcomes evaluated via enzyme-linked immunosorbent assay (ELISA) included PRG4 levels in synovial fluid, carboxy-terminal telepeptide of type II collagen (CTX-II) concentrations in urine and serum, and interleukin 1β (IL-1β) levels in synovial fluid and serum. RESULTS The rhPRG4 group had significantly less macroscopic cartilage damage in the medial tibial plateau compared with the PBS group ( P = .002). No difference was found between the rhPRG4+hyaluronan and PBS groups ( P = .23). However, no differences in microscopic damage scores were observed between the 3 groups ( P = .70). PRG4 production was elevated in the rhPRG4 group synovial fluid compared with the PBS group ( P = .033). The rhPRG4 group presented significantly lower urinary CTX-II levels, but not serum levels, when compared with the PBS ( P = .013) and rhPRG4+hyaluronan ( P = .011) groups. In serum and synovial fluid, both rhPRG4 ( P = .006; P = .017) and rhPRG4+hyaluronan groups ( P = .009; P = .03) presented decreased IL-1β levels. CONCLUSION All groups exhibited significant cartilage degeneration after DMM surgery. However, animals treated with rhPRG4 had the least amount of cartilage damage and less inflammation, providing evidence that intra-articular injections of rhPRG4 may slow the progression of posttraumatic osteoarthritis. CLINICAL RELEVANCE Patients with meniscal trauma are at high risk for posttraumatic osteoarthritis. This study demonstrates that an intra-articular injection regimen of rhPRG4 may attenuate cartilage damage after meniscal injury.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date