Author: Famiglini, L.; Bini, G.; Carobene, A.; Campagner, A.; Cabitza, F.
Title: Prediction of ICU admission for COVID-19 patients: A machine learning approach based on complete blood count data Cord-id: cbcmrnct Document date: 2021_1_1
ID: cbcmrnct
Snippet: In this article we discuss the development of prognostic Machine Learning (ML) models for COVID-19 progression: specifically, we address the task of predicting intensive care unit (ICU) admission in the next 5 days. We developed three ML models on the basis of 4995 Complete Blood Count (CBC) tests. We propose three ML models that differ in terms of interpretability: two fully interpretable models and a black-box one. We report an AUC of. 81 and. 83 for the interpretable models (the decision tree
Document: In this article we discuss the development of prognostic Machine Learning (ML) models for COVID-19 progression: specifically, we address the task of predicting intensive care unit (ICU) admission in the next 5 days. We developed three ML models on the basis of 4995 Complete Blood Count (CBC) tests. We propose three ML models that differ in terms of interpretability: two fully interpretable models and a black-box one. We report an AUC of. 81 and. 83 for the interpretable models (the decision tree and logistic regression, respectively), and an AUC of. 88 for the black-box model (an ensemble). This shows that CBC data and ML methods can be used for cost-effective prediction of ICU admission of COVID-19 patients: in particular, as the CBC can be acquired rapidly through routine blood exams, our models could also be applied in resource-limited settings and to get fast indications at triage and daily rounds. © 2021 IEEE.
Search related documents:
Co phrase search for related documents- logistic regression decision tree and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
Co phrase search for related documents, hyperlinks ordered by date