Author: Dhar, Subhra Sankar; Wu, Weichi
Title: Shift identification in time varying regression quantiles Cord-id: ch6qslbe Document date: 2020_11_12
ID: ch6qslbe
Snippet: This article investigates whether time-varying quantile regression curves are the same up to the horizontal shift or not. The errors and the covariates involved in the regression model are allowed to be locally stationary. We formalise this issue in a corresponding non-parametric hypothesis testing problem, and develop a integrated-squared-norm based test (SIT) as well as a simultaneous confidence band (SCB) approach. The asymptotic properties of SIT and SCB under null and local alternatives are
Document: This article investigates whether time-varying quantile regression curves are the same up to the horizontal shift or not. The errors and the covariates involved in the regression model are allowed to be locally stationary. We formalise this issue in a corresponding non-parametric hypothesis testing problem, and develop a integrated-squared-norm based test (SIT) as well as a simultaneous confidence band (SCB) approach. The asymptotic properties of SIT and SCB under null and local alternatives are derived. We then propose valid wild bootstrap algorithms to implement SIT and SCB. Furthermore, the usefulness of the proposed methodology is illustrated via analysing simulated and real data related to Covid-19 outbreak and climate science.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date