Selected article for: "accurate effective and machine method"

Author: Öztürk, Şaban; Özkaya, Umut; Barstuğan, Mücahid
Title: Classification of Coronavirus (COVID‐19) from X‐ray and CT images using shrunken features
  • Cord-id: cl2d401h
  • Document date: 2020_8_18
  • ID: cl2d401h
    Snippet: Necessary screenings must be performed to control the spread of the COVID‐19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID‐19. The information obtained by using X‐ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it i
    Document: Necessary screenings must be performed to control the spread of the COVID‐19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID‐19. The information obtained by using X‐ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it is aimed to develop a machine learning method for the detection of viral epidemics by analyzing X‐ray and CT images. In this study, images belonging to six situations, including coronavirus images, are classified using a two‐stage data enhancement approach. Since the number of images in the dataset is deficient and unbalanced, a shallow image augmentation approach was used in the first phase. It is more convenient to analyze these images with hand‐crafted feature extraction methods because the dataset newly created is still insufficient to train a deep architecture. Therefore, the Synthetic minority over‐sampling technique algorithm is the second data enhancement step of this study. Finally, the feature vector is reduced in size by using a stacked auto‐encoder and principal component analysis methods to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially to make the diagnosis of COVID‐19 in a short time and effectively. Also, it is thought to be a source of inspiration for future studies for deficient and unbalanced datasets.

    Search related documents:
    Co phrase search for related documents
    • accuracy performance and local binary pattern: 1, 2, 3
    • accuracy performance and local pattern: 1, 2, 3
    • accuracy performance and low number: 1
    • accuracy performance and lung disease: 1, 2, 3, 4
    • accuracy performance and lung image: 1, 2, 3, 4, 5
    • accuracy performance and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
    • accuracy performance and machine learning method: 1, 2, 3, 4, 5, 6, 7
    • accurate analysis and low attenuation: 1
    • accurate analysis and low number: 1
    • accurate analysis and lung disease: 1, 2
    • accurate analysis and lung image: 1
    • accurate analysis and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • accurate diagnosis rate and lung image: 1
    • accurately quickly and lung image: 1, 2, 3
    • accurately quickly and machine learn: 1
    • accurately quickly and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • accurately quickly and machine learning method: 1