Selected article for: "dengue virus and high affinity"

Author: Wang, Jiong; Zand, Martin S.
Title: The potential for antibody-dependent enhancement of SARS-CoV-2 infection: Translational implications for vaccine development
  • Cord-id: dgsc3hz0
  • Document date: 2020_4_13
  • ID: dgsc3hz0
    Snippet: There is an urgent need for vaccines to the 2019 coronavirus (COVID19; SARS-CoV-2). Vaccine development may not be straightforward, due to antibody-dependent enhancement (ADE). Antibodies against viral surface proteins can, in some cases, increase infection severity by ADE. This phenomenon occurs in SARS-CoV-1, MERS, HIV, Zika, and dengue virus infection and vaccination. Lack of high-affinity anti-SARS-CoV-2 IgG in children may explain the decreased severity of infection in these groups. Here, w
    Document: There is an urgent need for vaccines to the 2019 coronavirus (COVID19; SARS-CoV-2). Vaccine development may not be straightforward, due to antibody-dependent enhancement (ADE). Antibodies against viral surface proteins can, in some cases, increase infection severity by ADE. This phenomenon occurs in SARS-CoV-1, MERS, HIV, Zika, and dengue virus infection and vaccination. Lack of high-affinity anti-SARS-CoV-2 IgG in children may explain the decreased severity of infection in these groups. Here, we discuss the evidence for ADE in the context of SARS-CoV-2 infection and how to address this potential translational barrier to vaccine development, convalescent plasma, and targeted monoclonal antibody therapies.

    Search related documents: