Author: Zhou, Zhiqiang; Kang, Huicong; Li, Shiyong; Zhao, Xu
Title: Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms Cord-id: dmjp2faf Document date: 2020_5_26
ID: dmjp2faf
Snippet: Coronavirus disease 2019 (COVID-19), a disease caused by the novel betacoronavirus (SARS-CoV-2), has become a global pandemic threat. The potential involvement of COVID-19 in central nervous system (CNS) has attracted considerable attention due to neurological manifestations presented throughout the disease process. In addition, SARS-CoV-2 is structurally similar to SARS-CoV, and both bind to the angiotensin-converting enzyme 2 (ACE2) receptor to enter human cells. Thus, cells expressing ACE2, s
Document: Coronavirus disease 2019 (COVID-19), a disease caused by the novel betacoronavirus (SARS-CoV-2), has become a global pandemic threat. The potential involvement of COVID-19 in central nervous system (CNS) has attracted considerable attention due to neurological manifestations presented throughout the disease process. In addition, SARS-CoV-2 is structurally similar to SARS-CoV, and both bind to the angiotensin-converting enzyme 2 (ACE2) receptor to enter human cells. Thus, cells expressing ACE2, such as neurons and glial cells may act as targets and are thus vulnerable to SARS-CoV-2 infection. Here, we have reviewed the neurological characteristics of COVID-19 and summarized possible mechanisms of SARS-CoV-2 invasion of the CNS. COVID-19 patients have presented with a number of different neurological symptoms such as headache, dizziness, hyposmia, and hypogeusia during the course of illness. It has also been reported recently that some cases of COVID-19 have presented with concurrent acute cerebrovascular disease (acute ischemic stroke, cerebral venous sinus thrombosis, cerebral hemorrhage, subarachnoid hemorrhage), meningitis/encephalitis, acute necrotizing hemorrhagic encephalopathy, and acute Guillain–Barré syndrome. Furthermore, SARS-CoV-2 RNA detected in a cerebrospinal fluid specimen of a patient with COVID-19 have provided direct evidence to support the theory of neurotropic involvement of SARS-CoV-2. However, the underlying neurotropic mechanisms of SARS-CoV-2 are yet to be established. SARS-CoV-2 may affect CNS through two direct mechanisms (hematogenous dissemination or neuronal retrograde dissemination) or via indirect routes. The underlying mechanisms require further elucidation in the future.
Search related documents:
Co phrase search for related documents- acute infection and macrophage monocyte: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute infection setting and lung infection: 1
- acute ischemic stroke and lung infection: 1
- acute respiratory syndrome and lung infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and macrophage monocyte: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lung infection and macrophage monocyte: 1, 2, 3, 4, 5, 6, 7
Co phrase search for related documents, hyperlinks ordered by date