Author: Metzemaekers, Mieke; Cambier, Seppe; Blanter, Marfa; Vandooren, Jennifer; de Carvalho, Ana Carolina; Malengierâ€Devlies, Bert; Vanderbeke, Lore; Jacobs, Cato; Coenen, Sofie; Martens, Erik; Pörtner, Noëmie; Vanbrabant, Lotte; Van Mol, Pierre; Van Herck, Yannick; Van Aerde, Nathalie; Hermans, Greet; Gunst, Jan; Borin, Alexandre; Toledo N Pereira, Bruna; dos SP Gomes, Arilson Bernardo; Primon Muraro, Stéfanie; Fabiano de Souza, Gabriela; S Farias, Alessandro; Proencaâ€Modena, José Luiz; R Vinolo, Marco Aurélio; Marques, Pedro Elias; Wouters, Carine; Wauters, Els; Struyf, Sofie; Matthys, Patrick; Opdenakker, Ghislain; Marques, Rafael Elias; Wauters, Joost; Gouwy, Mieke; Proost, Paul
Title: Kinetics of peripheral blood neutrophils in severe coronavirus disease 2019 Cord-id: fcalycpw Document date: 2021_4_29
ID: fcalycpw
Snippet: OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVIDâ€19). We isolated neutrophils from the blood of COVIDâ€19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the anal
Document: OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVIDâ€19). We isolated neutrophils from the blood of COVIDâ€19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Coâ€culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARSâ€CoVâ€2) allowed us to investigate viral replication in neutrophils. RESULTS: Upon ICU admission, patients displayed high plasma concentrations of granulocyte–colonyâ€stimulating factor (Gâ€CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10(−), immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and nonâ€metalloproteinaseâ€derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMPâ€1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVIDâ€19 neutrophils were hyperâ€responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARSâ€CoVâ€2 failed to replicate inside human neutrophils. CONCLUSION: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVIDâ€19 patients, and supports the concept of an increased neutrophil activation state in the circulation.
Search related documents:
Co phrase search for related documents- aberrant formation and activate cell: 1
- aberrant formation and acute ards respiratory distress syndrome: 1
- absence presence and absolute number: 1, 2
- absence presence and activate cell: 1, 2
- absence presence and acute ards respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- absence presence and acute phase: 1, 2, 3, 4, 5, 6, 7, 8
- absence presence and additional evidence: 1
- absence presence and adhesion molecule: 1, 2, 3, 4
- absence presence and admission time: 1, 2, 3, 4, 5, 6, 7, 8, 9
- absolute number and acute ards respiratory distress syndrome: 1
- absolute number and acute phase: 1
- absolute number and admission time: 1, 2
- accession number and acute phase: 1
- activate cell and acute ards respiratory distress syndrome: 1
- activate cell and adhesion molecule: 1, 2
- activate neutrophil and acute ards respiratory distress syndrome: 1
- activation product and acute ards respiratory distress syndrome: 1
- activation state and acute ards respiratory distress syndrome: 1, 2
- activation state and acute phase: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date