Author: Sakai, Koji; Sigmund, Curt D.
Title: Molecular evidence of tissue renin-angiotensin systems: A focus on the brain Cord-id: fd7r4af3 Document date: 2005_1_1
ID: fd7r4af3
Snippet: Hypertension remains one of the largest human health problems, because hypertensive patients carry increased risk for ischemic heart disease, stroke, atherosclerosis, and renal failure. The renin-angiotensin system (RAS) has been intensively investigated for more than 100 years because it is a powerful regulator of blood pressure, and the antihypertensive benefits of RAS inhibitors are very clear. Despite a wealth of clinical and basic studies, the precise mechanisms by which the RAS regulates b
Document: Hypertension remains one of the largest human health problems, because hypertensive patients carry increased risk for ischemic heart disease, stroke, atherosclerosis, and renal failure. The renin-angiotensin system (RAS) has been intensively investigated for more than 100 years because it is a powerful regulator of blood pressure, and the antihypertensive benefits of RAS inhibitors are very clear. Despite a wealth of clinical and basic studies, the precise mechanisms by which the RAS regulates blood pressure remains incomplete. In this chapter, we review data demonstrating the existence and function of intrinsic tissue RAS, with a primary focus on the brain.
Search related documents:
Co phrase search for related documents- ace inhibitor and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- ace inhibitor and local ang ii generation: 1
- ace inhibitor effect and acute respiratory syndrome: 1, 2, 3
- acidic protein and acute respiratory syndrome: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date