Selected article for: "AA arachidonic acid and arachidonic acid"

Author: Yoshinaga, Kazuaki; Ishikawa, Haruna; Beppu, Fumiaki; Gotoh, Naohiro
Title: Incorporation of Dietary Arachidonic and Docosatetraenoic Acid into Mouse Brain.
  • Cord-id: i6vkgl19
  • Document date: 2021_2_17
  • ID: i6vkgl19
    Snippet: It is essential to analyze the metabolism of dietary polyunsaturated fatty acids in the brain for the research and development of functional foods. In this study, a single dose of 2,2-dideuterium-labeled docosatetraenoic acid ((+2)DTA) or 2,2-dideuterium-labeled arachidonic acid ((+2)AA) was orally administered to Institute of Cancer Research (ICR) mice and its metabolism in the brain was investigated. In the (+2)DTA group, the (+2)DTA content in the brain was significantly increased at 4, 8, 24
    Document: It is essential to analyze the metabolism of dietary polyunsaturated fatty acids in the brain for the research and development of functional foods. In this study, a single dose of 2,2-dideuterium-labeled docosatetraenoic acid ((+2)DTA) or 2,2-dideuterium-labeled arachidonic acid ((+2)AA) was orally administered to Institute of Cancer Research (ICR) mice and its metabolism in the brain was investigated. In the (+2)DTA group, the (+2)DTA content in the brain was significantly increased at 4, 8, 24, and 96 h compared to 0 h after administration, while in the (+2)AA group, the (+2)AA content was significantly increased at 4, 8, 24, and 96 h compared to 0 h. However, there was no significant difference in the content of (+2)DTA, a metabolite of (+2)AA, among all the groups. These results suggest that dietary (+2)DTA and (+2)AA pass through the blood-brain barrier and dietary (+2)AA is rather stored in the brain than converted to (+2)DTA.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date