Author: Yoshinaga, Kazuaki; Ishikawa, Haruna; Beppu, Fumiaki; Gotoh, Naohiro
Title: Incorporation of Dietary Arachidonic and Docosatetraenoic Acid into Mouse Brain. Cord-id: i6vkgl19 Document date: 2021_2_17
ID: i6vkgl19
Snippet: It is essential to analyze the metabolism of dietary polyunsaturated fatty acids in the brain for the research and development of functional foods. In this study, a single dose of 2,2-dideuterium-labeled docosatetraenoic acid ((+2)DTA) or 2,2-dideuterium-labeled arachidonic acid ((+2)AA) was orally administered to Institute of Cancer Research (ICR) mice and its metabolism in the brain was investigated. In the (+2)DTA group, the (+2)DTA content in the brain was significantly increased at 4, 8, 24
Document: It is essential to analyze the metabolism of dietary polyunsaturated fatty acids in the brain for the research and development of functional foods. In this study, a single dose of 2,2-dideuterium-labeled docosatetraenoic acid ((+2)DTA) or 2,2-dideuterium-labeled arachidonic acid ((+2)AA) was orally administered to Institute of Cancer Research (ICR) mice and its metabolism in the brain was investigated. In the (+2)DTA group, the (+2)DTA content in the brain was significantly increased at 4, 8, 24, and 96 h compared to 0 h after administration, while in the (+2)AA group, the (+2)AA content was significantly increased at 4, 8, 24, and 96 h compared to 0 h. However, there was no significant difference in the content of (+2)DTA, a metabolite of (+2)AA, among all the groups. These results suggest that dietary (+2)DTA and (+2)AA pass through the blood-brain barrier and dietary (+2)AA is rather stored in the brain than converted to (+2)DTA.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date