Selected article for: "ace inhibition and lung injury"

Author: Gandhi, Chintan K.; Holmes, Romel; Gewolb, Ira H.; Uhal, Bruce D.
Title: Degradation of Lung Protective Angiotensin Converting Enzyme-2 by Meconium in Human Alveolar Epithelial Cells: A Potential Pathogenic Mechanism in Meconium Aspiration Syndrome
  • Cord-id: ijbrhsl7
  • Document date: 2019_2_13
  • ID: ijbrhsl7
    Snippet: BACKGROUND: Pancreatic digestive enzymes present in meconium might be responsible for meconium-induced lung injury. The local Renin Angiotensin System plays an important role in lung injury and inflammation. Particularly, angiotensin converting enzyme-2 (ACE-2) has been identified as a protective lung enzyme against the insult. ACE-2 converts pro-apoptotic Angiotensin II to anti-apoptotic Angiotensin 1–7. However, the effect of meconium on ACE-2 has never been studied before. OBJECTIVE: To stu
    Document: BACKGROUND: Pancreatic digestive enzymes present in meconium might be responsible for meconium-induced lung injury. The local Renin Angiotensin System plays an important role in lung injury and inflammation. Particularly, angiotensin converting enzyme-2 (ACE-2) has been identified as a protective lung enzyme against the insult. ACE-2 converts pro-apoptotic Angiotensin II to anti-apoptotic Angiotensin 1–7. However, the effect of meconium on ACE-2 has never been studied before. OBJECTIVE: To study the effect of meconium on ACE-2, and whether inhibition of proteolytic enzymes present in the meconium reverses its effects on ACE-2. METHODS: Alveolar epithelial A549 cells were exposed to F-12 medium, 2.5% meconium, meconium + a protease inhibitor cocktail (PIc) and PIc alone for 16 h. At the end of incubation, apoptosis was measured with a nuclear fragmentation assay and cell lysates were collected for ACE-2 immunoblotting and enzyme activity. RESULTS: Meconium caused a fourfold increase in apoptotic nuclei (p < 0.001). The pro-apoptotic effect of meconium can be reversed by PIc. Meconium reduced ACE-2 enzyme activity by cleaving ACE-2 into a fragment detected at ~ 37 kDa by immunoblot. PIc prevented the degradation of ACE-2 and restored 50% of ACE-2 activity (p < 0.05). CONCLUSION: These data suggest that meconium causes degradation of lung protective ACE-2 by proteolytic enzymes present in meconium, since the effects of meconium can be reversed by PIc.

    Search related documents:
    Co phrase search for related documents
    • ace activity and acute lung injury: 1, 2, 3, 4, 5, 6, 7, 8
    • ace activity and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • ace enzyme and activity inhibition: 1, 2, 3, 4
    • ace enzyme and acute lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • ace enzyme and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active area and acute lung injury: 1
    • active area and acute respiratory distress syndrome: 1, 2, 3, 4
    • activity inhibition and acute lung injury: 1, 2, 3, 4, 5
    • activity inhibition and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6