Author: Wang, Yifei; Chen, Peng; Li, Wuchen
Title: Projected Wasserstein gradient descent for high-dimensional Bayesian inference Cord-id: lfsvo0zl Document date: 2021_2_12
ID: lfsvo0zl
Snippet: We propose a projected Wasserstein gradient descent method (pWGD) for high-dimensional Bayesian inference problems. The underlying density function of a particle system of WGD is approximated by kernel density estimation (KDE), which faces the long-standing curse of dimensionality. We overcome this challenge by exploiting the intrinsic low-rank structure in the difference between the posterior and prior distributions. The parameters are projected into a low-dimensional subspace to alleviate the
Document: We propose a projected Wasserstein gradient descent method (pWGD) for high-dimensional Bayesian inference problems. The underlying density function of a particle system of WGD is approximated by kernel density estimation (KDE), which faces the long-standing curse of dimensionality. We overcome this challenge by exploiting the intrinsic low-rank structure in the difference between the posterior and prior distributions. The parameters are projected into a low-dimensional subspace to alleviate the approximation error of KDE in high dimensions. We formulate a projected Wasserstein gradient flow and analyze its convergence property under mild assumptions. Several numerical experiments illustrate the accuracy, convergence, and complexity scalability of pWGD with respect to parameter dimension, sample size, and processor cores.
Search related documents:
Co phrase search for related documents- log likelihood and machine learning: 1, 2
- low dimensional and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Co phrase search for related documents, hyperlinks ordered by date