Author: Zhao, Yongfeng; Chen, Qianjun; Liu, Tao; Luo, Ping; Zhou, Yi; Liu, Minghui; Xiong, Bei; Zhou, Fuling
Title: Development and Validation of Predictors for the Survival of Patients With COVID-19 Based on Machine Learning Cord-id: m71zstm2 Document date: 2021_9_22
ID: m71zstm2
Snippet: Background: The outbreak of COVID-19 attracted the attention of the whole world. Our study aimed to explore the predictors for the survival of patients with COVID-19 by machine learning. Methods: We conducted a retrospective analysis and used the idea of machine learning to train the data of COVID-19 patients in Leishenshan Hospital through the logical regression algorithm provided by scikit-learn. Results: Of 2010 patients, 42 deaths were recorded until March 29, 2020. The mortality rate was 2.
Document: Background: The outbreak of COVID-19 attracted the attention of the whole world. Our study aimed to explore the predictors for the survival of patients with COVID-19 by machine learning. Methods: We conducted a retrospective analysis and used the idea of machine learning to train the data of COVID-19 patients in Leishenshan Hospital through the logical regression algorithm provided by scikit-learn. Results: Of 2010 patients, 42 deaths were recorded until March 29, 2020. The mortality rate was 2.09%. There were 6,812 records after data features combination and data arrangement, 3,025 records with high-quality after deleting incomplete data by manual checking, and 5,738 records after data balancing finally by the method of Borderline-1 Smote. The results of 10 times of data training by logistic regression model showed that albumin, saturation of pulse oxygen at admission, alanine aminotransferase, and percentage of neutrophils were possibly associated with the survival of patients. The results of 10 times of data training including age, sex, and height beyond the laboratory measurements showed that percentage of neutrophils, saturation of pulse oxygen at admission, alanine aminotransferase, sex, and albumin were possibly associated with the survival of patients. The rates of precision, recall, and f1-score of the two training models were all higher than 0.9 and relatively stable. Conclusions: We demonstrated that percentage of neutrophils, saturation of pulse oxygen at admission, alanine aminotransferase, sex, and albumin were possibly associated with the survival of patients with COVID-19.
Search related documents:
Co phrase search for related documents- accurately quickly and acute respiratory syndrome: 1, 2, 3, 4
- accurately quickly and admission time: 1
- acid detection and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acid detection and admission time: 1, 2, 3, 4, 5
- acute respiratory syndrome and admission ast alt ratio: 1
- acute respiratory syndrome and admission endotracheal intubation: 1, 2, 3, 4
- acute respiratory syndrome and admission illness severity: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute respiratory syndrome and admission number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- acute respiratory syndrome and admission time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- admission ast alt ratio and liver injury: 1
- admission number and liver injury: 1, 2
- admission time and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
Co phrase search for related documents, hyperlinks ordered by date