Author: Overton, Christopher E.; Stage, Helena B.; Ahmad, Shazaad; Curran-Sebastian, Jacob; Dark, Paul; Das, Rajenki; Fearon, Elizabeth; Felton, Timothy; Fyles, Martyn; Gent, Nick; Hall, Ian; House, Thomas; Lewkowicz, Hugo; Pang, Xiaoxi; Pellis, Lorenzo; Sawko, Robert; Ustianowski, Andrew; Vekaria, Bindu; Webb, Luke
Title: Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example Cord-id: n0j77b4c Document date: 2020_5_11
ID: n0j77b4c
Snippet: During an infectious disease outbreak, biases in the data and complexities of the underlying dynamics pose significant challenges in mathematically modelling the outbreak and designing policy. Motivated by the ongoing response to COVID-19, we provide a toolkit of statistical and mathematical models beyond the simple SIR-type differential equation models for analysing the early stages of an outbreak and assessing interventions. In particular, we focus on parameter estimation in the presence of kn
Document: During an infectious disease outbreak, biases in the data and complexities of the underlying dynamics pose significant challenges in mathematically modelling the outbreak and designing policy. Motivated by the ongoing response to COVID-19, we provide a toolkit of statistical and mathematical models beyond the simple SIR-type differential equation models for analysing the early stages of an outbreak and assessing interventions. In particular, we focus on parameter estimation in the presence of known biases in the data, and the effect of non-pharmaceutical interventions in enclosed subpopulations, such as households and care homes. We illustrate these methods by applying them to the COVID-19 pandemic.
Search related documents:
Co phrase search for related documents- active infection and acute respiratory failure: 1, 2, 3, 4, 5
- activity slow and acute respiratory failure: 1
Co phrase search for related documents, hyperlinks ordered by date