Author: Park, Jiwoon; Foox, Jonathan; Hether, Tyler; Danko, David; Warren, Sarah; Kim, Youngmi; Reeves, Jason; Butler, Daniel J.; Mozsary, Christopher; Rosiene, Joel; Shaiber, Alon; Afshinnekoo, Ebrahim; MacKay, Matthew; Bram, Yaron; Chandar, Vasuretha; Geiger, Heather; Craney, Arryn; Velu, Priya; Melnick, Ari M.; Hajirasouliha, Iman; Beheshti, Afshin; Taylor, Deanne; Saravia-Butler, Amanda; Singh, Urminder; Wurtele, Eve Syrkin; Schisler, Jonathan; Fennessey, Samantha; Corvelo, André; Zody, Michael C.; Germer, Soren; Salvatore, Steven; Levy, Shawn; Wu, Shixiu; Tatonetti, Nicholas; Shapira, Sagi; Salvatore, Mirella; Loda, Massimo; Westblade, Lars F.; Cushing, Melissa; Rennert, Hanna; Kriegel, Alison J.; Elemento, Olivier; Imielinski, Marcin; Borczuk, Alain C.; Meydan, Cem; Schwartz, Robert E.; Mason, Christopher E.
Title: Systemic Tissue and Cellular Disruption from SARS-CoV-2 Infection revealed in COVID-19 Autopsies and Spatial Omics Tissue Maps Cord-id: it4pwxvk Document date: 2021_3_9
ID: it4pwxvk
Snippet: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical n
Document: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and liver kidney: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
- acute ards respiratory distress syndrome and long term management: 1, 2
- acute ards respiratory distress syndrome and long term memory: 1
- acute ards respiratory distress syndrome and long term response: 1
- acute ards respiratory distress syndrome and low comparison: 1
- acute ards respiratory distress syndrome and low patient: 1, 2, 3, 4, 5, 6, 7
- acute ards respiratory distress syndrome and low sample: 1, 2
- acute ards respiratory distress syndrome and lung fibroblast: 1, 2
- acute ards respiratory distress syndrome and lung heart: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
- acute ards respiratory distress syndrome and lung heart tissue: 1, 2, 3, 4
- acute ards respiratory distress syndrome and lung influenza infection: 1, 2, 3, 4, 5
- acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- acute ards respiratory distress syndrome and lung injury gene: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lung liver: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute ards respiratory distress syndrome and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute ards respiratory distress syndrome and lung tumor: 1, 2
- acute ards respiratory distress syndrome and lymph node: 1, 2
- acute ards respiratory distress syndrome and macrophage activation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute ards respiratory distress syndrome and macrophage activation syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Co phrase search for related documents, hyperlinks ordered by date