Selected article for: "insertion mutation and multiple alignment"

Author: Saha, Indrajit; Ghosh, Nimisha; Maity, Debasree; Sharma, Nikhil; Sarkar, Jnanendra Prasad; Mitra, Kaushik
Title: Genome-wide analysis of Indian SARS-CoV-2 genomes for the identification of genetic mutation and SNP
  • Cord-id: lt0uo7q3
  • Document date: 2020_7_11
  • ID: lt0uo7q3
    Snippet: The wave of COVID-19 is a big threat to the human population. Presently, the world is going through different phases of lock down in order to stop this wave of pandemic; India being no exception. We have also started the lock down on 23rd March 2020. In this current situation, apart from social distancing only a vaccine can be the proper solution to serve the population of human being. Thus it is important for all the nations to perform the genome-wide analysis in order to identify the genetic v
    Document: The wave of COVID-19 is a big threat to the human population. Presently, the world is going through different phases of lock down in order to stop this wave of pandemic; India being no exception. We have also started the lock down on 23rd March 2020. In this current situation, apart from social distancing only a vaccine can be the proper solution to serve the population of human being. Thus it is important for all the nations to perform the genome-wide analysis in order to identify the genetic variation in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) so that proper vaccine can be designed. This fast motivated us to analyze publicly available 566 Indian complete or near complete SARS-CoV-2 genomes to find the mutation points as substitution, deletion and insertion. In this regard, we have performed the multiple sequence alignment in presence of reference sequence from NCBI. After the alignment, a consensus sequence is build to analyze each genome in order to identify the mutation points. As a consequence, we have found 933 substitutions, 2449 deletions and 2 insertions, in total 3384 unique mutation points, in 566 genomes across 29.9 K bp. Further, it has been classified into three groups as 100 clusters of mutations (mostly deletions), 1609 point mutations as substitution, deletion and insertion and 64 SNPs. These outcomes are visualized using BioCircos and bar plots as well as plotting entropy value of each genomic location. Moreover, phylogenetic analysis has also been performed to see the evolution of SARS-CoV-2 virus in India. It also shows the wide variation in tree which indeed vivid in genomic analysis. Finally, these SNPs can be the useful target for virus classification, designing and defining the effective dose of vaccine for the heterogeneous population.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date