Author: Newman, Joseph A; Douangamath, Alice; Yazdani, Setayesh; Yosaatmadja, Yuliana; Aimon, Anthony; Brandão-Neto, José; Dunnett, Louise; Gorrie-stone, Tyler; Skyner, Rachel; Fearon, Daren; Schapira, Matthieu; von Delft, Frank; Gileadi, Opher
Title: Structure, Mechanism and Crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase Cord-id: lxt18nof Document date: 2021_3_15
ID: lxt18nof
Snippet: The global COVID-19 pandemic is caused by the SARS-CoV-2 virus and has infected over 100 million and caused over 2 million fatalities worldwide at the point of writing. There is currently a lack of effective drugs to treat people infected with SARS-CoV-2. The SARS-CoV-2 Non-structural protein 13 (NSP13) is a superfamily1B helicase that has been identified as a possible target for anti-viral drugs due to its high sequence conservation and essential role in viral replication. In this study we pres
Document: The global COVID-19 pandemic is caused by the SARS-CoV-2 virus and has infected over 100 million and caused over 2 million fatalities worldwide at the point of writing. There is currently a lack of effective drugs to treat people infected with SARS-CoV-2. The SARS-CoV-2 Non-structural protein 13 (NSP13) is a superfamily1B helicase that has been identified as a possible target for anti-viral drugs due to its high sequence conservation and essential role in viral replication. In this study we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and the non-hydrolysable ATP analogue (AMP-PNP). Comparisons of these structures reveal details of global and local conformational changes that are induced by nucleotide binding and hydrolysis and provide insights into the helicase mechanism and possible modes of inhibition. Structural analysis reveals two pockets on NSP13 that are classified as “druggable†and include one of the most conserved sites in the entire SARS-CoV-2 proteome. To identify possible starting points for anti-viral drug development we have performed a crystallographic fragment screen against SARS-CoV-2 NSP13 helicase. The fragment screen reveals 65 fragment hits across 52 datasets, with hot spots in pockets predicted to be of functional importance, including the druggable nucleotide and nucleic acid binding sites, opening the way to structure guided development of novel antiviral agents.
Search related documents:
Co phrase search for related documents- active site and additional interaction: 1
- active site and adenine base: 1, 2
- active site and adenine moiety: 1
- active site and adenine ribose: 1
- active site outside and adenine base: 1
- active site outside and adenine ribose: 1
Co phrase search for related documents, hyperlinks ordered by date