Author: Abrego-Martinez, Juan Carlos; Jafari, Maziar; Chergui, Siham; Pavel, Catalin; Che, Diping; Siaj, Mohamed
Title: Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: Nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy Cord-id: u3rzoiab Document date: 2021_8_30
ID: u3rzoiab
Snippet: Rapid, mass diagnosis of the coronavirus disease 2019 (COVID-19) is critical to stop the ongoing infection spread. The two standard screening methods to confirm the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are polymerase chain reaction (PCR), through the RNA of the virus, and serology by detecting antibodies produced as a response to the viral infection. However, given the detection complexity, cost and relatively long analysis times of these techniques, novel technologies ar
Document: Rapid, mass diagnosis of the coronavirus disease 2019 (COVID-19) is critical to stop the ongoing infection spread. The two standard screening methods to confirm the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are polymerase chain reaction (PCR), through the RNA of the virus, and serology by detecting antibodies produced as a response to the viral infection. However, given the detection complexity, cost and relatively long analysis times of these techniques, novel technologies are urgently needed. Here, we report an aptamer-based biosensor developed on a screen-printed carbon electrode platform for rapid, sensitive, and user-friendly detection of SARS-CoV-2. The aptasensor relies on an aptamer targeting the receptor-binding domain (RBD) in the spike protein (S-protein) of the SARS-CoV-2. The aptamer immobilization on gold nanoparticles, and the presence of S-protein in the aptamer-target complex, investigated for the first time by photo-induced force microscopy mapping between 770 and 1910 cm(-1) of the electromagnetic spectrum, revealed abundant S-protein homogeneously distributed on the sensing probe. The detection of SARS-CoV-2 S-protein was achieved by electrochemical impedance spectroscopy after 40 min incubation with several analyte concentrations, yielding a limit of detection of 1.30 pM (66 pg/mL). Moreover, the aptasensor was successfully applied for the detection of a SARS-CoV-2 pseudovirus, thus suggesting it is a promising tool for the diagnosis of COVID-19.
Search related documents:
Co phrase search for related documents- activity loss and long short: 1
- long short and low cost platform: 1
- long short and low detection: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date