Author: Das, Rajarshi; Godbole, Ameya; Monath, Nicholas; Zaheer, Manzil; McCallum, Andrew
Title: Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion Cord-id: m74b4kth Document date: 2020_10_7
ID: m74b4kth
Snippet: A case-based reasoning (CBR) system solves a new problem by retrieving `cases' that are similar to the given problem. If such a system can achieve high accuracy, it is appealing owing to its simplicity, interpretability, and scalability. In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs). Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB. Our probabilistic model estimates the likelihood t
Document: A case-based reasoning (CBR) system solves a new problem by retrieving `cases' that are similar to the given problem. If such a system can achieve high accuracy, it is appealing owing to its simplicity, interpretability, and scalability. In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs). Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB. Our probabilistic model estimates the likelihood that a path is effective at answering a query about the given entity. The parameters of our model can be efficiently computed using simple path statistics and require no iterative optimization. Our model is non-parametric, growing dynamically as new entities and relations are added to the KB. On several benchmark datasets our approach significantly outperforms other rule learning approaches and performs comparably to state-of-the-art embedding-based approaches. Furthermore, we demonstrate the effectiveness of our model in an"open-world"setting where new entities arrive in an online fashion, significantly outperforming state-of-the-art approaches and nearly matching the best offline method. Code available at https://github.com/ameyagodbole/Prob-CBR
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date