Author: Lee, Gregory R; Seiberlich, Nicole; Sunshine, Jeffrey L; Carroll, Timothy J; Griswold, Mark A
Title: Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction. Cord-id: jlq2b9bz Document date: 2013_1_1
ID: jlq2b9bz
Snippet: Contrast-enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo-random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneit
Document: Contrast-enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo-random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1-mm isotropic resolution and a 1.1-s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal-to-noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date