Selected article for: "acute respiratory syndrome coronavirus and additional gene"

Author: Widera, Marek; Wilhelm, Alexander; Toptan, Tuna; Raffel, Johanna M.; Kowarz, Eric; Roesmann, Fabian; Siemund, Anna Lena; Luciano, Vanessa; Külp, Marius; Reis, Jennifer; Bracharz, Silvia; Pallas, Christiane; Ciesek, Sandra; Marschalek, Rolf
Title: Generation of a Sleeping Beauty transposon-based cellular system for rapid and sensitive identification of SARS-CoV-2 host dependency and restriction factors
  • Cord-id: gk9l4soq
  • Document date: 2021_4_27
  • ID: gk9l4soq
    Snippet: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile reporter cell system that allows SARS-CoV-2 infection experiments compatible for high-throughput
    Document: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile reporter cell system that allows SARS-CoV-2 infection experiments compatible for high-throughput and live cell imaging. The reporter cell is based on lung derived A549 cells, which show a profound interferon response and convenient cell culture characteristics. ACE2 and TMPRSS2 were introduced for constitutive expression in A549 cells. Subclones with varying levels of ACE2/TMPRSS2 were screened for optimal SARS-CoV2 susceptibility. Furthermore, extensive evaluation demonstrated that SARS-CoV-2 infected reporter cells were distinguishable from mock-infected cells and already showed approximately 12 h post infection a clear signal to noise ratio in terms of cell roughness, fluorescence and a profound visible cytopathic effect. Moreover, due to the high transfection efficiency and proliferation capacity, Sleeping Beauty transposase-based overexpression cell lines with a second inducible fluorescence reporter cassette (eGFP) can be generated in a very short time, enabling the investigation of host and restriction factors in a doxycycline-inducible manner. Thus, the novel reporter cell line allows rapid and sensitive detection of SARS-CoV-2 infection and the screening for host factors essential for viral replication. Highlights - Sleeping Beauty transposon-based cellular system was used to generate a highly susceptible cell line for monitoring SARS-CoV-2 infection - The versatile reporter cell line A549-AT is suitable for rapid and sensitive high-throughput assays - Additional gene specific expression cassettes allow the identification of SARS-CoV-2 host dependency and restriction factors

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1