Selected article for: "low sensitivity and magnetic resonance imaging"

Author: Yang, Yuqi; Zhang, Yingfeng; Wang, Baolong; Guo, Qianni; Yuan, Yaping; Jiang, Weiping; Shi, Lei; Yang, Minghui; Chen, Shizhen; Lou, Xin; Zhou, Xin
Title: Coloring ultrasensitive MRI with tunable metal–organic frameworks
  • Cord-id: mq56ic2l
  • Document date: 2021_2_9
  • ID: mq56ic2l
    Snippet: As one of the most important imaging modalities, magnetic resonance imaging (MRI) still faces relatively low sensitivity to monitor low-abundance molecules. A newly developed technology, hyperpolarized (129)Xe magnetic resonance imaging (MRI), can boost the signal sensitivity to over 10 000-fold compared with that under conventional MRI conditions, and this technique is referred to as ultrasensitive MRI. However, there are few methods to visualize complex mixtures in this field due to the diffic
    Document: As one of the most important imaging modalities, magnetic resonance imaging (MRI) still faces relatively low sensitivity to monitor low-abundance molecules. A newly developed technology, hyperpolarized (129)Xe magnetic resonance imaging (MRI), can boost the signal sensitivity to over 10 000-fold compared with that under conventional MRI conditions, and this technique is referred to as ultrasensitive MRI. However, there are few methods to visualize complex mixtures in this field due to the difficulty in achieving favorable “cages” to capture the signal source, namely, (129)Xe atoms. Here, we proposed metal–organic frameworks (MOFs) as tunable nanoporous hosts to provide suitable cavities for xenon. Due to the widely dispersed spectroscopic signals, (129)Xe in different MOFs was easily visualized by assigning each chemical shift to a specific color. The results illustrated that the pore size determined the exchange rate, and the geometric structure and elemental composition influenced the local charge experienced by xenon. We confirmed that a complex mixture was first differentiated by specific colors in ultrasensitive MRI. The introduction of MOFs helps to overcome long-standing obstacles in ultrasensitive, multiplexed MRI.

    Search related documents:
    Co phrase search for related documents
    • local environment and lung exchange: 1
    • low detection and lung imaging: 1
    • low detection and magnetic resonance: 1, 2, 3
    • lung imaging and magnetic resonance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25