Selected article for: "adequate vt and lung volume"

Author: Guerin, C.; Cour, M.; Stevic, N.; Degivry, F.; L'Her, E.; Louis, B.; Argaud, L.
Title: Sharing ventilators in the Covid-19 pandemics. A bench study
  • Cord-id: krly70iu
  • Document date: 2020_11_4
  • ID: krly70iu
    Snippet: COVID-19 pandemics sets the healthcare system to a shortage of ventilators. We aimed at assessing tidal volume (VT) delivery and air recirculation during expiration when one ventilator is divided into 2 patients. The study was performed in a research laboratory in a medical ICU of a University hospital. An ICU-dedicated (V500) and a lower-level ventilator (Elisee 350) were attached to two test-lungs (QuickLung) through a dedicated flow-splitter. A 50 mL/cmH2O Compliance (C) and 5 cmH2O/L/s Resis
    Document: COVID-19 pandemics sets the healthcare system to a shortage of ventilators. We aimed at assessing tidal volume (VT) delivery and air recirculation during expiration when one ventilator is divided into 2 patients. The study was performed in a research laboratory in a medical ICU of a University hospital. An ICU-dedicated (V500) and a lower-level ventilator (Elisee 350) were attached to two test-lungs (QuickLung) through a dedicated flow-splitter. A 50 mL/cmH2O Compliance (C) and 5 cmH2O/L/s Resistance (R) were set in both A and B lungs (step1), C50R20 in A / C20R20 in B (step 2), C20R20 in A / C10R20 in B (step 3), and C50R20 in A / C20R5 in B (step 4). Each ventilator was set in volume and pressure control mode to deliver 0.8L VT. We assessed VT from a pneumotachograph placed immediately before each lung, rebreathed volume, and expiratory resistance (circuit and valve). Values are median (1st-3rd quartiles) and compared between ventilators by non-parametric tests. Between Elisee 350 and V500 in volume control VT in A/B patients were 0.381/0.387 vs. 0.412/0.433L in step 1, 0.501/0.270 vs. 0.492/0.370L in step 2, 0.509/0.237 vs. 0.496/0.332L in step 3, and 0.496/0.281 vs. 0.480/0.329L in step 4. In pressure control the corresponding values were 0.373/0.336 vs. 0.430/0.414L, 0.416/0.185/0.322/0.234L, 0.193/0.108 vs. 0.176/0.092L and 0.422/0.201 vs. 0.481/0.329L, respectively (P<0.001 between ventilators at each step for each volume). Rebreathed air volume ranged between 0.7 to 37.8 ml and negatively correlated with expiratory resistance in steps 2 and 3. The lower-level ventilator performed closely to the ICU-dedicated ventilator. Due to dependence of VT to C pressure control should be used to maintain adequate VT at least in one patient when C and/or R changes abruptly and monitoring of VT should be done carefully. Increasing expiratory resistance should reduce rebreathed volume.

    Search related documents:
    Co phrase search for related documents
    • acute ards respiratory distress syndrome and lung safe study: 1, 2, 3, 4, 5
    • acute ards respiratory distress syndrome and lung similar: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • acute ards respiratory distress syndrome and lung time constant: 1
    • acute ards respiratory distress syndrome and lung volume: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
    • acute ards respiratory distress syndrome and lungs design: 1