Author: Qi, Jinpeng; Ding, Yongsheng; Shao, Shihuang
Title: Dynamic modeling of cellular response to DNA damage based on p53 stress response networks Cord-id: jz4zb8qp Document date: 2009_10_10
ID: jz4zb8qp
Snippet: Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MD
Document: Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date