Selected article for: "cellular viral membrane and viral fusion"

Author: Lu, Yanning; Neo, Tuan Ling; Liu, Ding Xiang; Tam, James P.
Title: Importance of SARS-CoV Spike Protein Trp-rich Region in Viral Infectivity
  • Cord-id: k0i4d8w6
  • Document date: 2008_7_1
  • ID: k0i4d8w6
    Snippet: SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine sca
    Document: SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually-substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10–25% infectivity comparing to the wild type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.

    Search related documents:
    Co phrase search for related documents
    • luciferase promega assay kit and lysis buffer: 1, 2