Author: Meng, Lingqi; Masuda, Naoki
                    Title: Epidemic dynamics on metapopulation networks with node2vec mobility  Cord-id: n0e8wrt8  Document date: 2021_6_15
                    ID: n0e8wrt8
                    
                    Snippet: Metapopulation models have been a powerful tool for both theorizing and simulating epidemic dynamics. In a metapopulation model, one considers a network composed of subpopulations and their pairwise connections, and individuals are assumed to migrate from one subpopulation to another obeying a given mobility rule. While how different mobility rules affect epidemic dynamics in metapopulation models has been much studied, there have been relatively few efforts on systematic comparison of the effec
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Metapopulation models have been a powerful tool for both theorizing and simulating epidemic dynamics. In a metapopulation model, one considers a network composed of subpopulations and their pairwise connections, and individuals are assumed to migrate from one subpopulation to another obeying a given mobility rule. While how different mobility rules affect epidemic dynamics in metapopulation models has been much studied, there have been relatively few efforts on systematic comparison of the effects of simple (i.e., unbiased) random walks and more complex mobility rules. Here we study a susceptible-infected-susceptible (SIS) dynamics in a metapopulation model, in which individuals obey a parametric second-order random-walk mobility rule called the node2vec. We map the second-order mobility rule of the node2vec to a first-order random walk in a network whose each node is a directed edge connecting a pair of subpopulations and then derive the epidemic threshold. For various networks, we find that the epidemic threshold is large (therefore, epidemic spreading tends to be suppressed) when the individuals infrequently backtrack or infrequently visit the common neighbors of the currently visited and the last visited subpopulations than when the individuals obey the simple random walk. The amount of change in the epidemic threshold induced by the node2vec mobility is in general not as large as, but is sometimes comparable with, the one induced by the change in the overall rate at which individuals diffuse from one subpopulation to another.
 
  Search related documents: 
                                
                                Co phrase  search for related documents, hyperlinks ordered by date