Selected article for: "broad range and high quality"

Author: Ngaffo, Armielle Noulapeu; Ayeb, Walid El; Choukair, Zièd
Title: Service recommendation driven by a matrix factorization model and time series forecasting
  • Cord-id: jum025b7
  • Document date: 2021_5_16
  • ID: jum025b7
    Snippet: The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service (QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-accurate service
    Document: The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service (QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-accurate service recommendation becomes a challenging task. To tackle the aforementioned challenges, we propose a data sparsity resilient service recommendation approach that aims to predict relevant services in a sustainable manner for end-users. Indeed, our method performs both a QoS prediction of the current time interval using a flexible matrix factorization technique and a QoS prediction of the future time interval using a time series forecasting method based on an AutoRegressive Integrated Moving Average (ARIMA) model. The service recommendation in our approach is based on a couple of criteria ensuring in a lasting way, the appropriateness of the services returned to the active user. The experiments are conducted on a real-world dataset and demonstrate the effectiveness of our method compared to the competing recommendation methods.

    Search related documents:
    Co phrase search for related documents
    • absolute error and additional data: 1, 2
    • active user and additional data: 1