Author: Leung, Daisy W.; Amarasinghe, Gaya K.
Title: Structural insights into RNA recognition and activation of RIG-I-like receptors Cord-id: gxe3kwtu Document date: 2012_6_1
ID: gxe3kwtu
Snippet: RIG-I like receptors (RLR) that recognize non-self RNA play critical roles in activating host innate immune pathways in response to viral infections. Not surprisingly, RLRs and their associated signaling networks are also targeted by numerous antagonists that facilitate viral pathogenesis. Although the role of RLRs in orchestrating antiviral signaling has been recognized for some time, our knowledge of the complex regulatory mechanisms that control signaling through these key molecules is incomp
Document: RIG-I like receptors (RLR) that recognize non-self RNA play critical roles in activating host innate immune pathways in response to viral infections. Not surprisingly, RLRs and their associated signaling networks are also targeted by numerous antagonists that facilitate viral pathogenesis. Although the role of RLRs in orchestrating antiviral signaling has been recognized for some time, our knowledge of the complex regulatory mechanisms that control signaling through these key molecules is incomplete. A series of recent structural studies shed new light into the structural basis for dsRNA recognition and activation of RLRs. Collectively, these studies suggest that the repression of RLRs is facilitated by a cis element that makes multiple contacts with domains within the helicase and that RNA binding initiated by the C-terminal RNA binding domain is important for ATP hydrolysis and release of the CARD domain containing signaling module from the repressed conformation. These studies also highlight potential differences between RIG-I and MDA5, two RLR members. Together with previous studies, these new results bring us a step closer to uncovering the complex regulatory process of a key protein that protects host cells from invading pathogens.
Search related documents:
Co phrase search for related documents- acid inducible gene and activation important: 1, 2
- acid inducible gene and activation mechanism: 1
- acid inducible gene and activity regulation: 1
- acid inducible gene and additional study: 1
- acid inducible gene retinoic and activation domain: 1, 2
- acid inducible gene retinoic and activation important: 1, 2
- acid inducible gene retinoic and activation mechanism: 1
- acid inducible gene retinoic and activity regulation: 1
- acid inducible gene retinoic and additional study: 1
- acid strand and activity regulation: 1
- activation important and long dsrna: 1
- activation important and long short: 1
- activation important and low affinity: 1
- activation important and macrophage dendritic cell: 1
- activation mechanism and additional study: 1
- activation mechanism and long dsrna: 1
- activation mechanism and low affinity: 1
- activity regulation and long short: 1
- activity regulation and macrophage dendritic cell: 1
Co phrase search for related documents, hyperlinks ordered by date