Author: Price, Eric; Scarlett, Jonathan
Title: A Fast Binary Splitting Approach to Non-Adaptive Group Testing Cord-id: n40j6bnh Document date: 2020_6_18
ID: n40j6bnh
Snippet: In this paper, we consider the problem of noiseless non-adaptive group testing under the for-each recovery guarantee, also known as probabilistic group testing. In the case of $n$ items and $k$ defectives, we provide an algorithm attaining high-probability recovery with $O(k \log n)$ scaling in both the number of tests and runtime, improving on the best known $O(k^2 \log k \cdot \log n)$ runtime previously available for any algorithm that only uses $O(k \log n)$ tests. Our algorithm bears resemb
Document: In this paper, we consider the problem of noiseless non-adaptive group testing under the for-each recovery guarantee, also known as probabilistic group testing. In the case of $n$ items and $k$ defectives, we provide an algorithm attaining high-probability recovery with $O(k \log n)$ scaling in both the number of tests and runtime, improving on the best known $O(k^2 \log k \cdot \log n)$ runtime previously available for any algorithm that only uses $O(k \log n)$ tests. Our algorithm bears resemblance to Hwang's adaptive generalized binary splitting algorithm (Hwang, 1972); we recursively work with groups of items of geometrically vanishing sizes, while maintaining a list of"possibly defective"groups and circumventing the need for adaptivity. While the most basic form of our algorithm requires $\Omega(n)$ storage, we also provide a low-storage variant based on hashing, with similar recovery guarantees.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date