Author: Shi, Changcheng; Wang, Limin; Ye, Jian; Gu, Zhichun; Wang, Shuying; Xia, Junbo; Xie, Yaping; Li, Qingyu; Xu, Renjie; Lin, Nengming
Title: Predictors of mortality in patients with coronavirus disease 2019: a systematic review and meta-analysis Cord-id: nl0achxa Document date: 2021_7_8
ID: nl0achxa
Snippet: BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with a high mortality rate, especially in patients with severe illness. We conducted a systematic review and meta-analysis to assess the potential predictors of mortality in patients with COVID-19. METHODS: PubMed, EMBASE, the Cochrane Library, and three electronic Chinese databases were searched from December 1, 2019 to April 29, 2020. Eligible studies reporting potential predictors of mortality in patients with COVID-19 were identif
Document: BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with a high mortality rate, especially in patients with severe illness. We conducted a systematic review and meta-analysis to assess the potential predictors of mortality in patients with COVID-19. METHODS: PubMed, EMBASE, the Cochrane Library, and three electronic Chinese databases were searched from December 1, 2019 to April 29, 2020. Eligible studies reporting potential predictors of mortality in patients with COVID-19 were identified. Unadjusted prognostic effect estimates were pooled using the random-effects model if data from at least two studies were available. Adjusted prognostic effect estimates were presented by qualitative analysis. RESULTS: Thirty-six observational studies were identified, of which 27 were included in the meta-analysis. A total of 106 potential risk factors were tested, and the following important predictors were associated with mortality: advanced age, male sex, current smoking status, preexisting comorbidities (especially chronic kidney, respiratory, and cardio-cerebrovascular diseases), symptoms of dyspnea, complications during hospitalization, corticosteroid therapy and a severe condition. Additionally, a series of abnormal laboratory biomarkers of hematologic parameters, hepatorenal function, inflammation, coagulation, and cardiovascular injury were also associated with fatal outcome. CONCLUSION: We identified predictors of mortality in patients with COVID-19. These findings could help healthcare providers take appropriate measures and improve clinical outcomes in such patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-021-06369-0.
Search related documents:
Co phrase search for related documents- acute kidney injury and adequate number: 1
- acute kidney injury and adjusted estimate: 1
- acute kidney injury and administration timing: 1
- acute kidney injury and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
- acute kidney injury and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute kidney injury and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acute kidney injury and longitudinal study: 1, 2, 3, 4, 5, 6
- acute kidney injury and lymphocyte lym: 1
- acute liver injury and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute liver injury and liver injury marker: 1
- acute liver injury and logistic regression: 1, 2, 3, 4, 5, 6
- acute physiology and additional file: 1
- acute physiology and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
- acute physiology and logistic regression model: 1, 2, 3
- acute physiology and lymphocyte lym: 1
- acute respiratory syndrome and additional attention: 1, 2, 3, 4, 5
- acute respiratory syndrome and additional file: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- acute respiratory syndrome and adequate number: 1, 2, 3, 4
- acute respiratory syndrome and adjusted estimate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Co phrase search for related documents, hyperlinks ordered by date