Author: Mirzaei, Maryam; Hedayat, Seyed Mahdi; Karimi-Sabet, Javad; Towfighi Darain, Jafar
Title: Graphene Growth with No Intended Carbon Precursor Feeding into the LPCVD Process: Causes, Solutions, and Effects. Cord-id: kn0kv3jo Document date: 2020_9_25
ID: kn0kv3jo
Snippet: In this research, we have investigated the unintended graphene nucleation problem and its damaging effects on monolayer graphene synthesis in low-pressure chemical vapor deposition (LPCVD) process. This problem is the growth of graphene on the copper surface with no carbon feedstock. A new source of undesired carbon species was identified which has not been addressed so far. The hydrogen-rich heating stage was diagnosed as the onset of the unintended nucleation for the first time owing to the de
Document: In this research, we have investigated the unintended graphene nucleation problem and its damaging effects on monolayer graphene synthesis in low-pressure chemical vapor deposition (LPCVD) process. This problem is the growth of graphene on the copper surface with no carbon feedstock. A new source of undesired carbon species was identified which has not been addressed so far. The hydrogen-rich heating stage was diagnosed as the onset of the unintended nucleation for the first time owing to the determinant catalytic role of hydrogen in this stage. It was found out that this problem leads to uncontrollable growth of multilayer graphene, growth of defective graphene film and also inhibition of the reliable synthesis of monolayer graphene. We managed to grow enhanced-quality monolayer graphene by developing some innovative solutions to the problem containing a general solution based on the hydrogen effects in the heating stage. The results reveal a significant decrease in the unintended nucleation density from ~ 2000 to almost zero domains per 100 × 100 µm2 copper area. Furthermore, Raman, HRTEM and SAED analysis confirm the defect-free growth of monolayer graphene after employing the solutions. These findings could pave the way for the reliable synthesis of high-quality monolayer graphene as well as large-sized graphene domains.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date