Author: Camacho-Rivera, Marlene; Islam, Jessica Yasmine; Rivera, Argelis; Vidot, Denise Christina
Title: Attitudes Toward Using COVID-19 mHealth Tools Among Adults With Chronic Health Conditions: Secondary Data Analysis of the COVID-19 Impact Survey Cord-id: o70gcwif Document date: 2020_12_17
ID: o70gcwif
Snippet: BACKGROUND: Adults with chronic conditions are disproportionately burdened by COVID-19 morbidity and mortality. Although COVID-19 mobile health (mHealth) apps have emerged, research on attitudes toward using COVID-19 mHealth tools among those with chronic conditions is scarce. OBJECTIVE: This study aimed to examine attitudes toward COVID-19, identify determinants of COVID-19 mHealth tool use across demographic and health-related characteristics, and evaluate associations between chronic health c
Document: BACKGROUND: Adults with chronic conditions are disproportionately burdened by COVID-19 morbidity and mortality. Although COVID-19 mobile health (mHealth) apps have emerged, research on attitudes toward using COVID-19 mHealth tools among those with chronic conditions is scarce. OBJECTIVE: This study aimed to examine attitudes toward COVID-19, identify determinants of COVID-19 mHealth tool use across demographic and health-related characteristics, and evaluate associations between chronic health conditions and attitudes toward using COVID-19 mHealth tools (eg, mHealth or web-based methods for tracking COVID-19 exposures, symptoms, and recommendations). METHODS: We used nationally representative data from the COVID-19 Impact Survey collected from April to June 2020 (n=10,760). Primary exposure was a history of chronic conditions, which were defined as self-reported diagnoses of cardiometabolic, respiratory, immune-related, and mental health conditions and overweight/obesity. Primary outcomes were attitudes toward COVID-19 mHealth tools, including the likelihood of using (1) a mobile phone app to track COVID-19 symptoms and receive recommendations; (2) a website to track COVID-19 symptoms, track location, and receive recommendations; and (3) an app using location data to track potential COVID-19 exposure. Outcome response options for COVID-19 mHealth tool use were extremely/very likely, moderately likely, or not too likely/not likely at all. Multinomial logistic regression was used to compare the likelihood of COVID-19 mHealth tool use between people with different chronic health conditions, with not too likely/not likely at all responses used as the reference category for each outcome. We evaluated the determinants of each COVID-19 mHealth intervention using Poisson regression. RESULTS: Of the 10,760 respondents, 21.8% of respondents were extremely/very likely to use a mobile phone app or a website to track their COVID-19 symptoms and receive recommendations. Additionally, 24.1% of respondents were extremely/very likely to use a mobile phone app to track their location and receive push notifications about whether they have been exposed to COVID-19. After adjusting for age, race/ethnicity, sex, socioeconomic status, and residence, adults with mental health conditions were the most likely to report being extremely/very or moderately likely to use each mHealth intervention compared to those without such conditions. Adults with respiratory-related chronic diseases were extremely/very (conditional odds ratio 1.16, 95% CI 1.00-1.35) and moderately likely (conditional odds ratio 1.23, 95% CI 1.04-1.45) to use a mobile phone app to track their location and receive push notifications about whether they have been exposed to COVID-19. CONCLUSIONS: Our study demonstrates that attitudes toward using COVID-19 mHealth tools vary widely across modalities (eg, web-based method vs app) and chronic health conditions. These findings may inform the adoption of long-term engagement with COVID-19 apps, which is crucial for determining their potential in reducing disparities in COVID-19 morbidity and mortality among individuals with chronic health conditions.
Search related documents:
Co phrase search for related documents- adjusted prevalence ratio and liver disease: 1, 2
- adjusted prevalence ratio and logistic regression: 1, 2, 3, 4
- adjusted prevalence ratio and low prevalence: 1, 2
- liver disease and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
- liver disease and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- liver disease and long term sustainability: 1
- liver disease and low prevalence: 1, 2, 3, 4, 5
- liver disease and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61
- logistic regression and long term sustainability: 1, 2
- logistic regression and low prevalence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
- logistic regression and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- logistic regression model and low prevalence: 1, 2, 3, 4, 5, 6, 7, 8
- logistic regression model and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- low prevalence and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9
- low socioeconomic background and lung disease: 1
Co phrase search for related documents, hyperlinks ordered by date