Selected article for: "chinese city and global pandemic"

Author: Gupta, Amit Kumar; Khan, Md. Shoaib; Choudhury, Shubham; Mukhopadhyay, Adhip; Sakshi,; Rastogi, Amber; Thakur, Anamika; Kumari, Pallawi; Kaur, Manmeet; Shalu,; Saini, Chanchal; Sapehia, Vandna; Barkha,; Patel, Pradeep Kumar; Bhamare, Kailash T.; Kumar, Manoj
Title: CoronaVR: A Computational Resource and Analysis of Epitopes and Therapeutics for Severe Acute Respiratory Syndrome Coronavirus-2
  • Cord-id: l9s5u5va
  • Document date: 2020_7_31
  • ID: l9s5u5va
    Snippet: In December 2019, the Chinese city of Wuhan was the center of origin of a pneumonia-like disease outbreak with an unknown causative pathogen. The CDC, China, managed to track the source of infection to a novel coronavirus (2019-nCoV; SARS-CoV-2) that shares approximately 79.6% of its genome with SARS-CoV. The World Health Organization (WHO) initially declared COVID-19 as a Public Health Emergency of International Concern (PHEIC) and later characterized it as a global pandemic on March 11, 2020.
    Document: In December 2019, the Chinese city of Wuhan was the center of origin of a pneumonia-like disease outbreak with an unknown causative pathogen. The CDC, China, managed to track the source of infection to a novel coronavirus (2019-nCoV; SARS-CoV-2) that shares approximately 79.6% of its genome with SARS-CoV. The World Health Organization (WHO) initially declared COVID-19 as a Public Health Emergency of International Concern (PHEIC) and later characterized it as a global pandemic on March 11, 2020. Due to the novel nature of this virus, there is an urgent need for vaccines and therapeutics to control the spread of SARS-CoV-2 and its associated disease, COVID-19. Global efforts are underway to circumvent its further spread and treat COVID-19 patients through experimental vaccine formulations and therapeutic interventions, respectively. In the absence of any effective therapeutics, we have devised h bioinformatics-based approaches to accelerate global efforts in the fight against SARS-CoV-2 and to assist researchers in the initial phase of vaccine and therapeutics development. In this study, we have performed comprehensive meta-analyses and developed an integrative resource, “CoronaVR” (http://bioinfo.imtech.res.in/manojk/coronavr/). Predominantly, we identified potential epitope-based vaccine candidates, siRNA-based therapeutic regimens, and diagnostic primers. The resource is categorized into the main sections “Genomes,” “Epitopes,” “Therapeutics,” and Primers.” The genome section harbors different components, viz, genomes, a genome browser, phylogenetic analysis, codon usage, glycosylation sites, and structural analysis. Under the umbrella of epitopes, sub-divisions, namely cross-protective epitopes, B-cell (linear/discontinuous), T-cell (CD4(+)/CD8(+)), CTL, and MHC binders, are presented. The therapeutics section has different sub-sections like siRNA, miRNAs, and sgRNAs. Further, experimentally confirmed and designed diagnostic primers are earmarked in the primers section. Our study provided a set of shortlisted B-cell and T-cell (CD4(+) and CD8(+)) epitopes that can be experimentally tested for their incorporation in vaccine formulations. The list of selected primers can be used in testing kits to identify SARS-CoV-2, while the recommended siRNAs, sgRNAs, and miRNAs can be used in therapeutic regimens. We foresee that this resource will help in advancing the research against coronaviruses.

    Search related documents:
    Co phrase search for related documents
    • accession number and active site: 1
    • accession number and acute respiratory syndrome: 1, 2, 3
    • accession number and acute sars cov respiratory syndrome coronavirus: 1, 2, 3
    • accessory protein and action mechanism: 1
    • accessory protein and active site: 1, 2
    • accessory protein and acute diarrhea: 1
    • accessory protein and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accessory protein and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • action mechanism and acute diarrhea: 1
    • action mechanism and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • action mechanism and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • action mechanism and adaptive arm: 1
    • active development and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • active development and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7
    • active site and acute diarrhea: 1
    • active site and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active site and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and adaptation insight gain: 1
    • acute respiratory syndrome and adaptive arm: 1, 2, 3, 4, 5