Author: Khodir, Ahmed E; Samra, Yara A; Said, Eman
Title: A novel role of nifuroxazide in attenuation of sepsis-associated acute lung and myocardial injuries; role of TLR4/NLPR3/IL-1β signaling interruption. Cord-id: o92a0z3w Document date: 2020_6_3
ID: o92a0z3w
Snippet: Acute lung injury (ALI) and the subsequent multi-system organ failure is a serious health problem with devastating impacts on the health care systems. Indeed, the world has been facing an un-preceded situation in the past couple of months following COVID-19 infestation and the associated high-mortality rates mainly attributed to sepsis and the associated multiple organ failures of particular concern; acute respiratory distress syndrome post lung injury. The current study provides evidence on the
Document: Acute lung injury (ALI) and the subsequent multi-system organ failure is a serious health problem with devastating impacts on the health care systems. Indeed, the world has been facing an un-preceded situation in the past couple of months following COVID-19 infestation and the associated high-mortality rates mainly attributed to sepsis and the associated multiple organ failures of particular concern; acute respiratory distress syndrome post lung injury. The current study provides evidence on the ameliorative impact of nifuroxazide, and FDA approved antidiarrheal drug in attenuation of lipopolysaccharide (LPS)-induced ALI and myocarditis when administrated either in prophylactic or curative regimens. Nifuroxazide administration was associated with a significant improvement in lung and heart histopathological characteristics and architecture with retraction of LPS-induced inflammatory-infiltration. This was associated with retraction in serum biomarkers of cellular injury of which; LDH, CK-MB, and ALP. Nifuroxazide administration was associated with a significant improvement in both lung and heart oxidative status. Such positive outcomes were underlined by a significant inhibitory effect of nifuroxazide on lung and heart contents of toll-like receptor (4) (TLR4)/the inflammasome NALPR3/interleukin- 1β (IL-1β). In conclusion: Nifuroxazide attenuates LPS-induced ALI and myocardial injury via interruption of TLR4/NALPR3/IL-1β signaling. Thus it can offer a potential approach for attenuation of sepsis in critically ill patients.
Search related documents:
Co phrase search for related documents- acute ali lung injury and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lps induce and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Co phrase search for related documents, hyperlinks ordered by date