Author: Uto, Masaki; Okano, Masashi
Title: Robust Neural Automated Essay Scoring Using Item Response Theory Cord-id: olv7h0mg Document date: 2020_6_9
ID: olv7h0mg
Snippet: Automated essay scoring (AES) is the task of automatically assigning scores to essays as an alternative to human grading. Conventional AES methods typically rely on manually tuned features, which are laborious to effectively develop. To obviate the need for feature engineering, many deep neural network (DNN)-based AES models have been proposed and have achieved state-of-the-art accuracy. DNN-AES models require training on a large dataset of graded essays. However, assigned grades in such dataset
Document: Automated essay scoring (AES) is the task of automatically assigning scores to essays as an alternative to human grading. Conventional AES methods typically rely on manually tuned features, which are laborious to effectively develop. To obviate the need for feature engineering, many deep neural network (DNN)-based AES models have been proposed and have achieved state-of-the-art accuracy. DNN-AES models require training on a large dataset of graded essays. However, assigned grades in such datasets are known to be strongly biased due to effects of rater bias when grading is conducted by assigning a few raters in a rater set to each essay. Performance of DNN models rapidly drops when such biased data are used for model training. In the fields of educational and psychological measurement, item response theory (IRT) models that can estimate essay scores while considering effects of rater characteristics have recently been proposed. This study therefore proposes a new DNN-AES framework that integrates IRT models to deal with rater bias within training data. To our knowledge, this is a first attempt at addressing rating bias effects in training data, which is a crucial but overlooked problem.
Search related documents:
Co phrase search for related documents- absolute error and accuracy improve: 1, 2, 3
- absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and loss function: 1, 2
- absolute error and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and machine learn: 1
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- accuracy evaluate and lstm network: 1
- accuracy evaluate and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- accuracy evaluate and machine learning model: 1, 2
- accuracy evaluate and mae mean absolute error: 1, 2, 3, 4
- accuracy improve and actual dataset: 1
- accuracy improve and long distance: 1
- accuracy improve and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8
- accuracy improve and loss function: 1, 2, 3, 4
- accuracy improve and lstm network: 1, 2, 3, 4
- accuracy improve and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8
Co phrase search for related documents, hyperlinks ordered by date